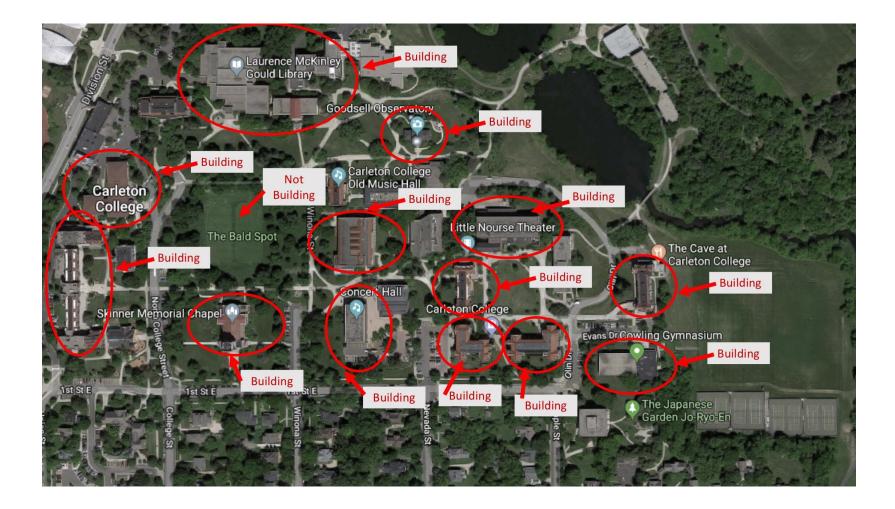

Unified Energy System: What's the Point?

Jon Bisila, Kiya Govek, Jack Lightbody, Zephyr Lucas, Dustin Michels, Carolyn Ryan

problem data database api dashboard analysis conclusion problem data database api dashboard analysis conclusion

- 1. What is energy analytics?
- 2. Why do we care?
- 3. Current System
- 4. Our Task

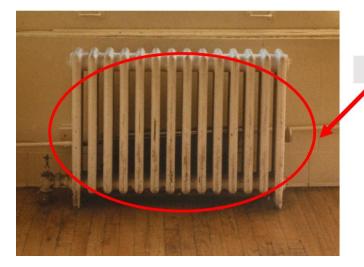


What is "energy analytics?"

1. What is energy analytics?

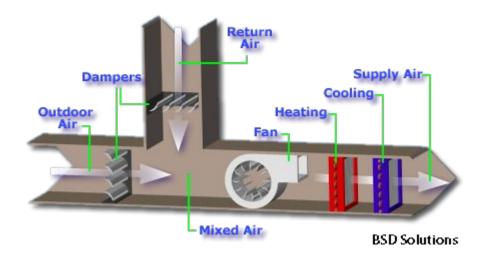
- 2. Why do we care?
- 3. Current System
- 4. Our Task

Thermostat


Radiators

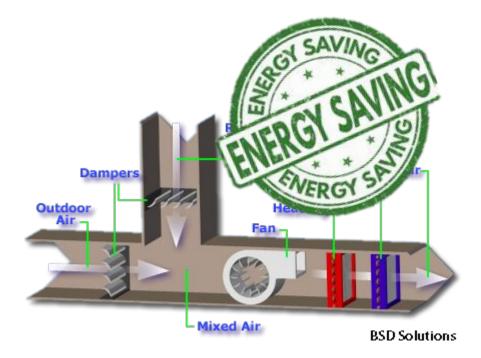
Air handling unit

VAV Box



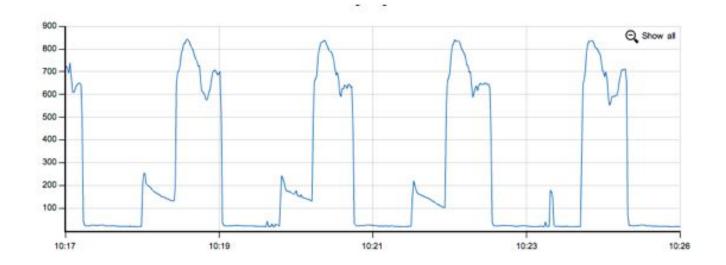
- Functioning properly
- Active only when necessary
- Coordinating with others / taking relevant information into account

- Functioning properly
- Active only when necessary
- Coordinating with others / taking relevant information into account

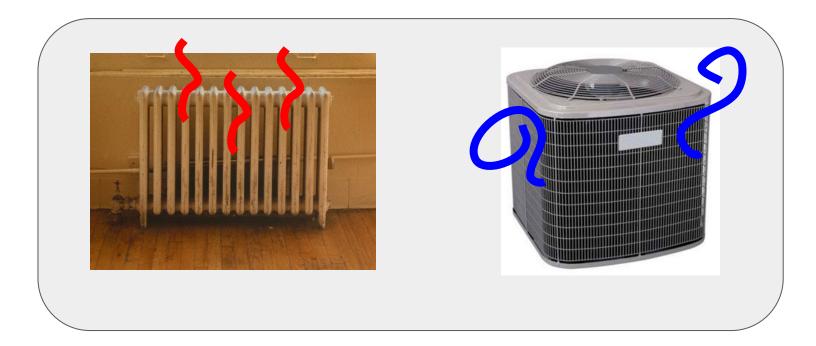


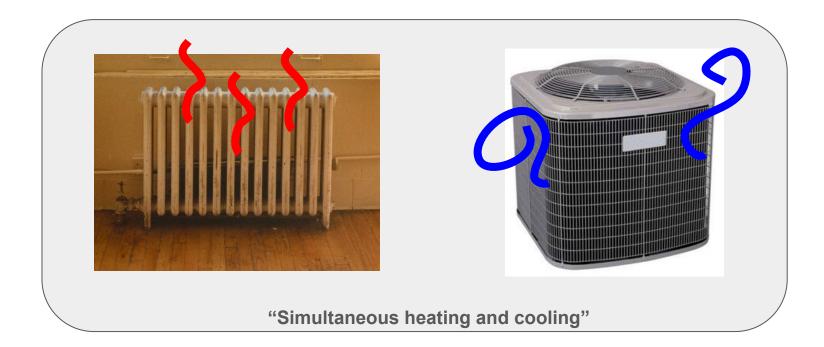
Air side economizer

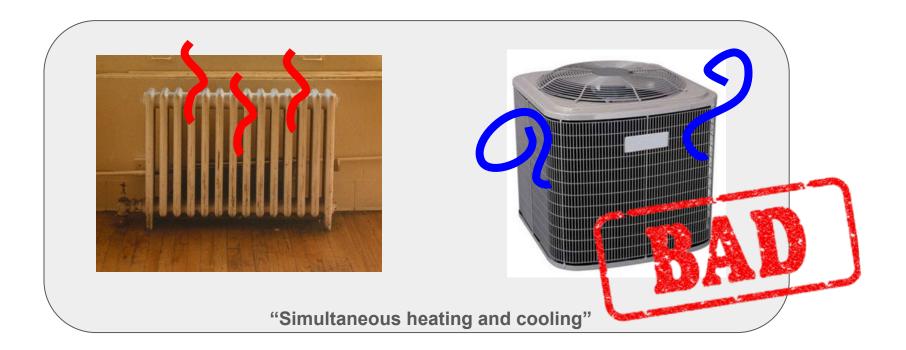
Air side economizer


SAVI

- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment


- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment


- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment


- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment

- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment

- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment

- Malfunctioning / broken
- "Over-cycling" in search of target
- Fighting other equipment

Energy Analytics Tools

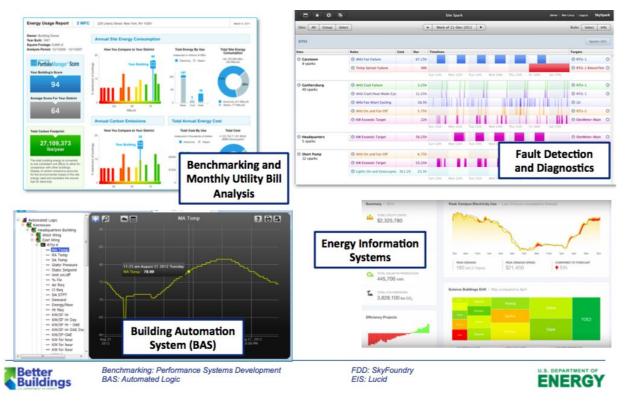


Image from: "Better Buildings Alliance EMIS Team: New Resources" (March 2017)

Energy Analytics Tools

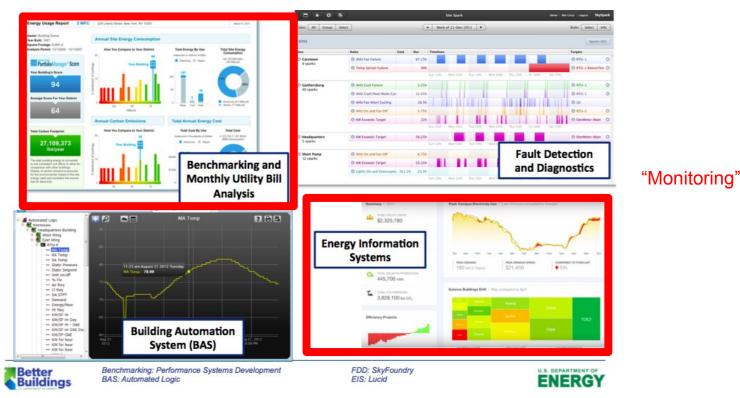


Image from: "Better Buildings Alliance EMIS Team: New Resources" (March 2017)

Energy Analytics Tools

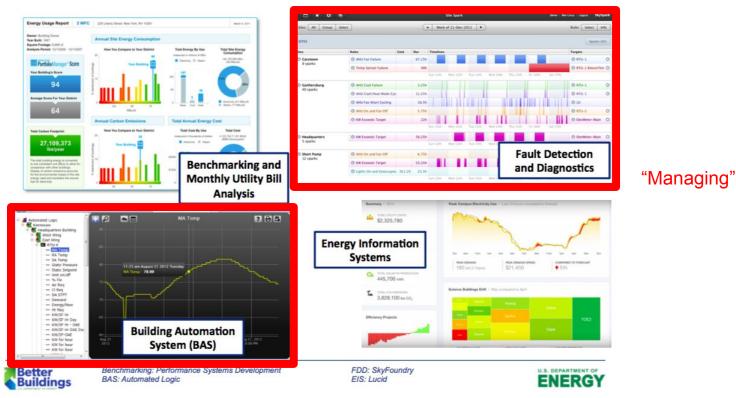


Image from: "Better Buildings Alliance EMIS Team: New Resources" (March 2017)

Why do we care?

- 1. What is energy analytics?
- 2. Why do we care?
- 3. Current System
- 4. Our Task

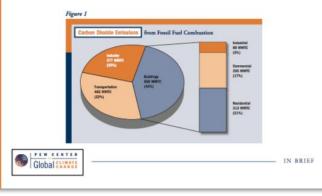
1. Climate Change

innovative policy solutions In Bridf, November 2006 TO GLOBAL CLIMATE CHANGE

Building Solutions to Climate Change

Buildings are the single most important contributor to the greenhouse gas emissions that cause climate change. The built environment can make an important contribution to climate change mitigation while providing more livable spaces. With current technologies and the expansion of

a few key policies, significant reductions in greenhouse gases can be realized in the near term. A combination of technology research and development and clear and sustained climate and energy policies would drive more dramatic reductions over time.


I. Introduction

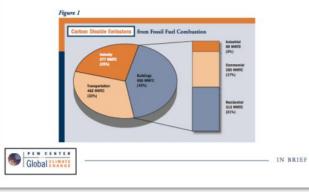
Energy used in residential, commercial, and industrial buildings produces approximately 43 percent of U.S. carbon dioxide (CO:) emissions.¹ Carbon dioxide is the major greenhouse gas that contributes to global warming.

Given the magnitude of this contribution, it is essential that efforts to control global warming include an explicit focus on the buildings sector. This brief provides an overview of technologies

and policies, examines current public and private initiatives to promote greenhouse gas (GHG) reductions in buildings, and makes recommendations for moving toward a climate-friendly built environment.

The United States has made remarkable progress in reducing the energy and carbon intensity² of its building stock³ and operations in the last few decades. Energy use in buildings

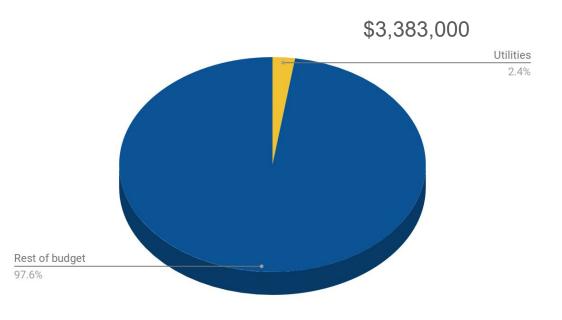
1. Climate Change


innovative policy solutions In Bridf: November 2006 TO GLOBAL CLIMATE CHANGE

Energy used in residential, commercial, and industrial buildings produces approximately 43 percent of U.S. carbon dioxide (CO₂) emissions.¹ Carbon dioxide is the major green-

Given the magnitude of this contribution, it is essential that efforts to control global warming include an explicit focus on the buildings sector. This brief provides an overview of technologies and policies, examines current public and private initiatives to promote greenhouse gas (GHG) reductions in buildings, and makes recommendations for moving toward a climate-friendly built environment.

The United States has made remarkable progress in reducing the energy and carbon intensity² of its building stock² and operations in the last few decades. Energy use in buildings



- 1. Climate Change
- 2. Finance

Finance

1. **2.**

Climate Change

Spending 2017

- 1. Climate Change
- 2. Finance
- 3. Knowledge for its own sake

- 1. Climate Change
- 2. Finance
- 3. Knowledge for its own sake

"The unexamined building

is not worth living in"

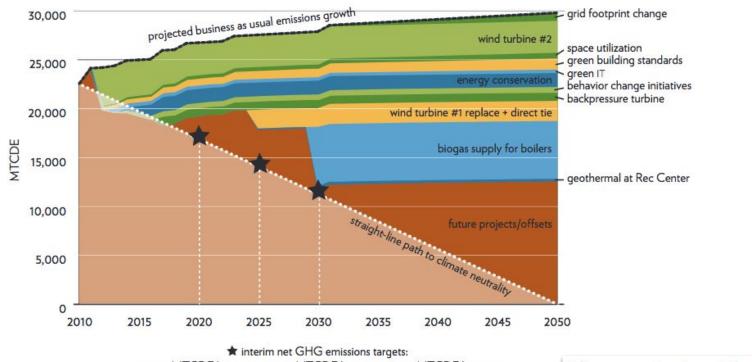
-Socrates

Carleton Already Engaged

Maintenance Staff

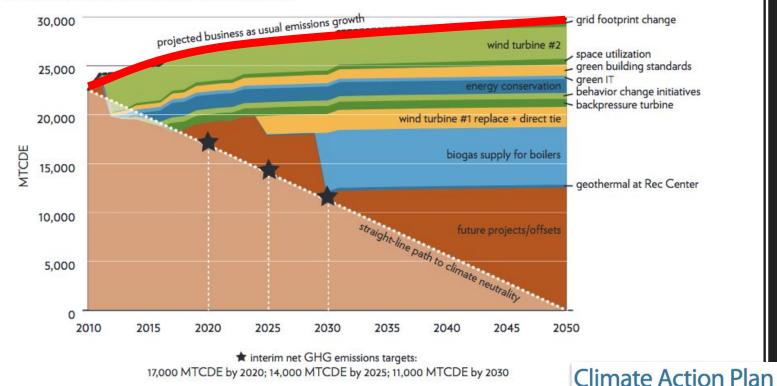
Sustainability Assistants (STAs)

Martha Larson Manager of Campus Energy and Sustainability,


Climate Action Plan May 2011 Carleton Climate Action Plan Steering Committee Carleton will remain on or ahead of a straight-line path to climate neutrality by 2050 through implementation of strategies that result in a net savings to the College over the life of the plan such as the second wind turbine, a portfolio of energy conservation strategies

Carleton College

Climate Action Plan May 2011 Carleton Climate Action Plan Steering Committee


FIGURE VI.3: CARBON REDUCTION WEDGE DIAGRAM

17,000 MTCDE by 2020; 14,000 MTCDE by 2025; 11,000 MTCDE by 2030

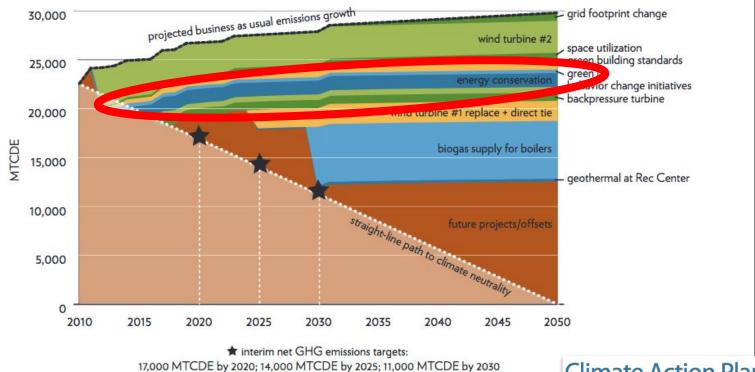

Climate Action Plan May 2011

FIGURE VI.3: CARBON REDUCTION WEDGE DIAGRAM

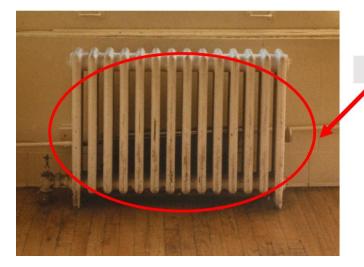
May 2011

FIGURE VI.3: CARBON REDUCTION WEDGE DIAGRAM

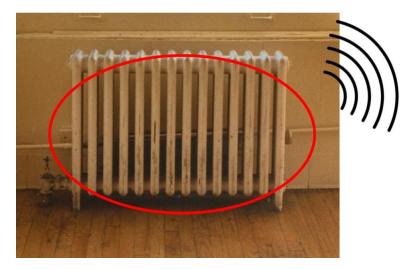
Climate Action Plan May 2011

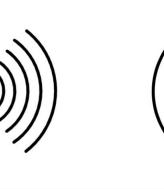
- 1. What is energy analytics?
- 2. Why do we care?
- 3. Current System
- 4. Our Task

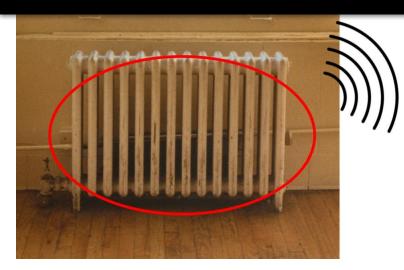
Thermostat


Radiators

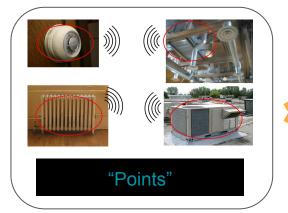
Air handling unit


VAV Box



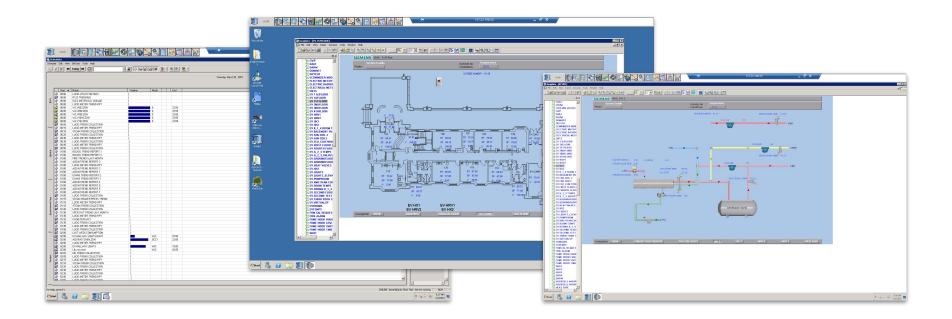


"Points"



"Points"

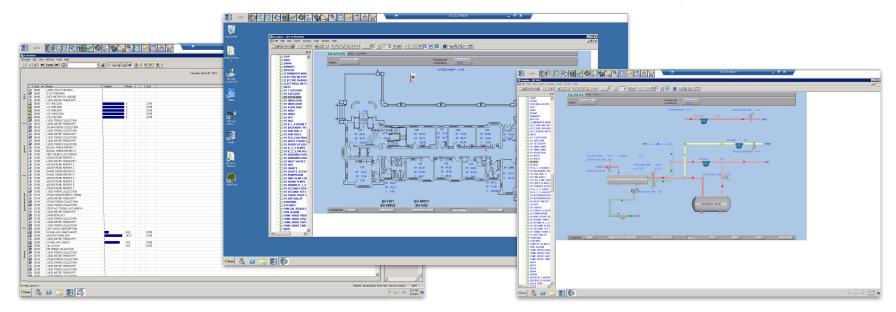
AUTOMATEDLOGIC

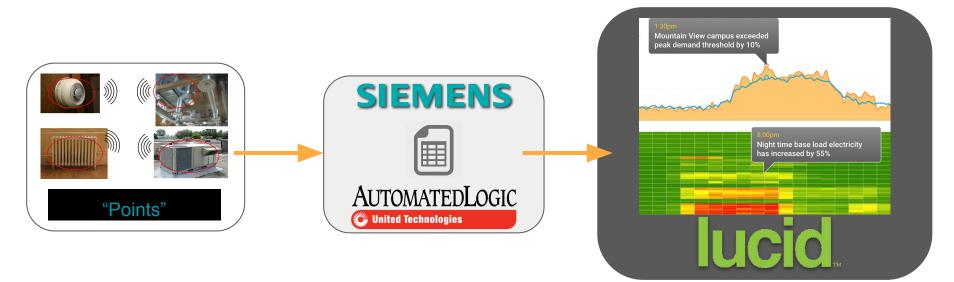

United Technologies

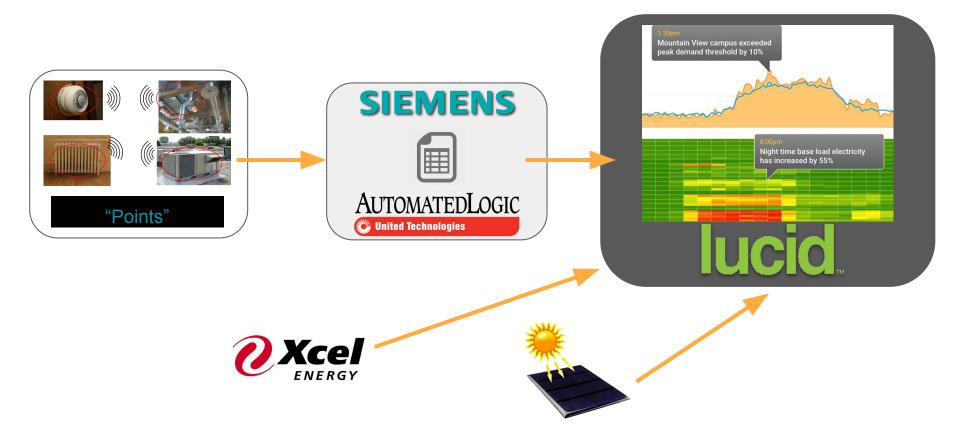
 ✓ Offer detailed information

- ✓ Configurable
- ✓ Interface with hardware

✓ Offer detailed information

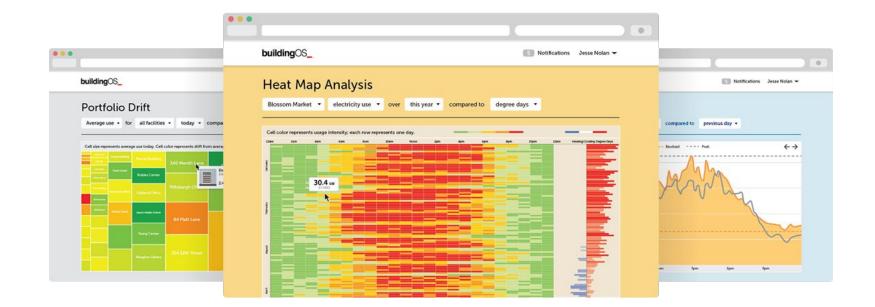

- ✓ Configurable
- ✓ Interface with hardware




 ✓ Offer detailed information

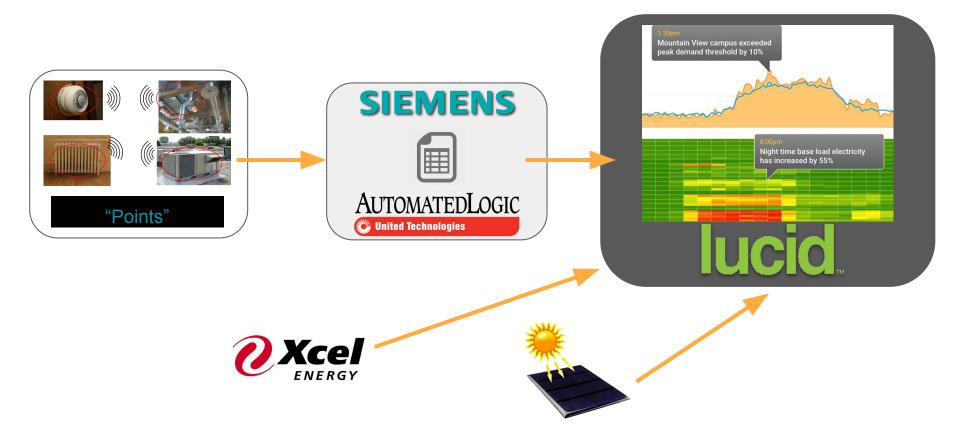
- ✓ Configurable
- Interface with hardware

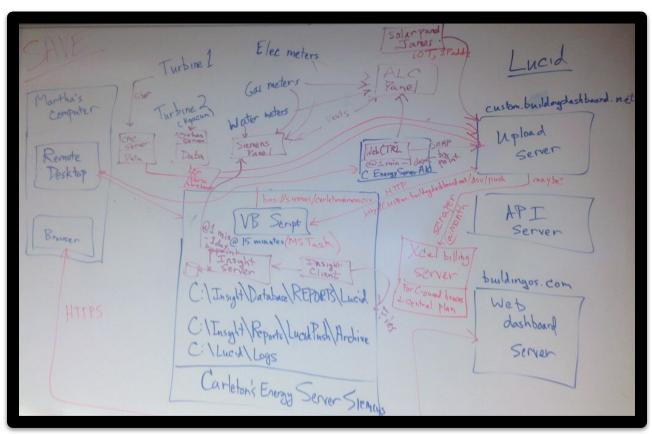
- X Difficult to use
- Limited data visualization
 capabilities
- X Don't offer automated analysis

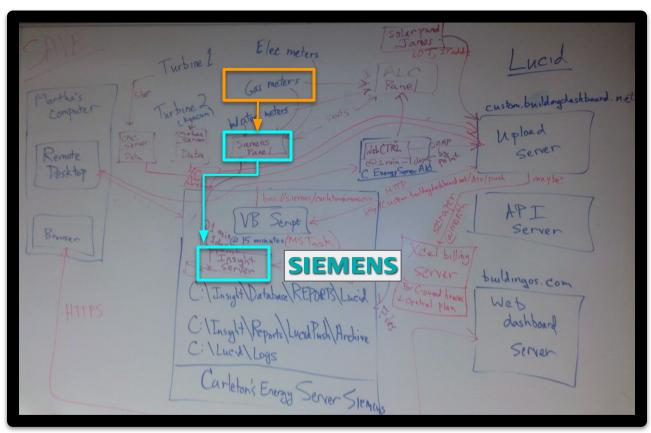


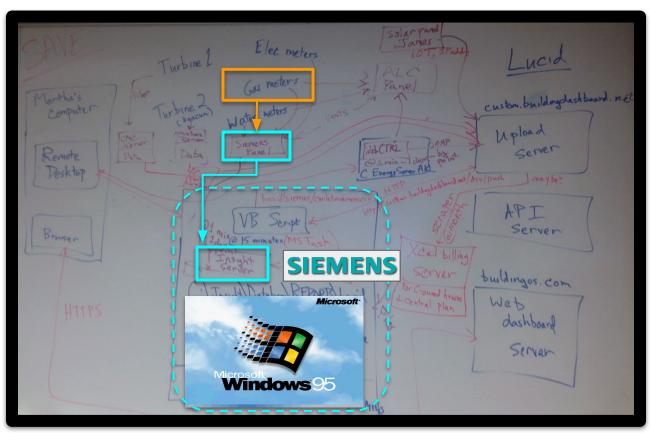
Lucid

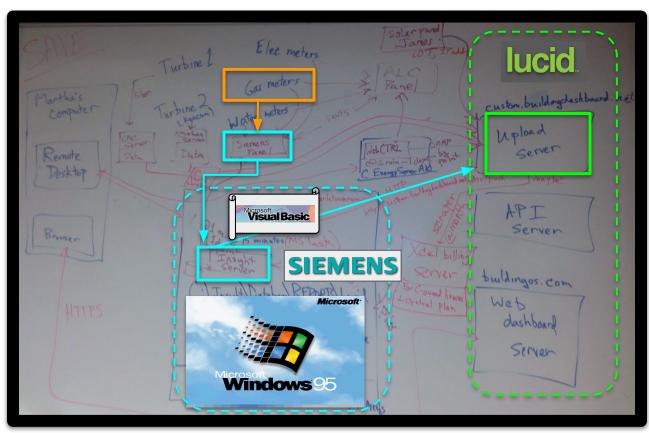
- ✓ Modern user interface
- ✓ Slick data visualizations
- ✓ Scrape PDFs for utility \$

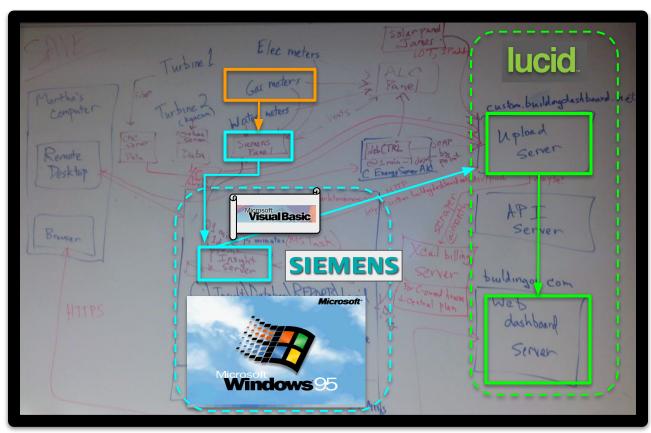


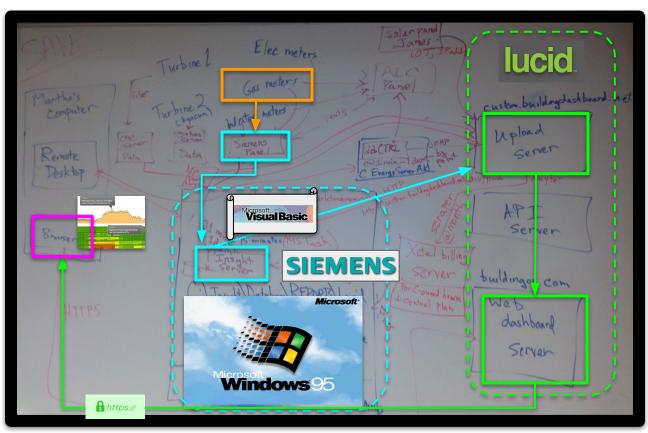

Lucid

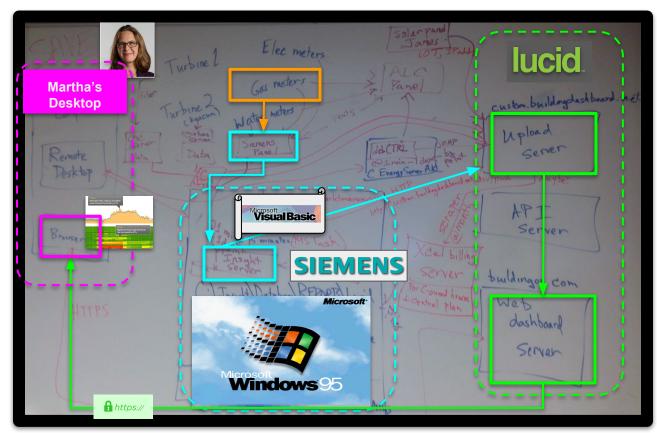

- ✓ Modern user interface
- ✓ Slick data visualizations
- Scrape PDFs for utility \$

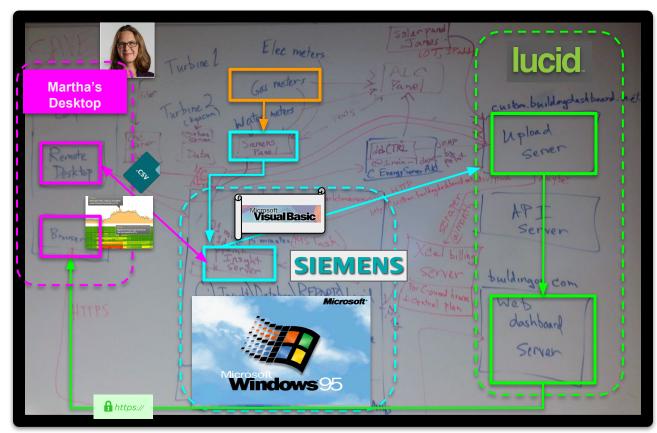

- **×** "High-level" overview
- X Not easy to customize
- ✗ <u>Also</u> doesn't offer automated analysis

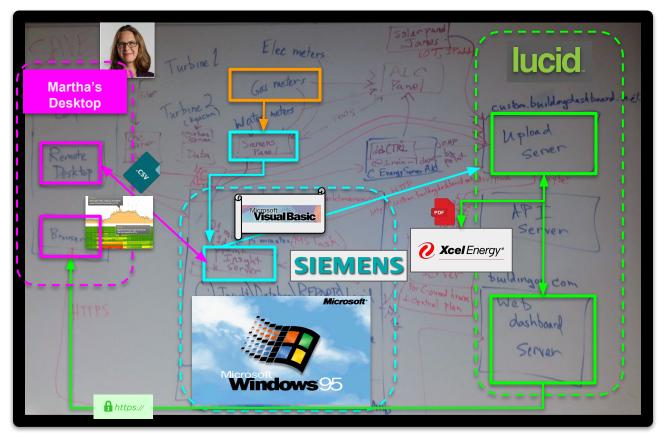

			8
•	buildingOS_	🔝 Notifications 🛛 Jesse Nolan 🛩	
buildingOS_	Heat Map Analysis		🔝 Notifications 🛛 Jesse Nolan 🛩
Portfolio Drift	Blossom Market 💌 electricity use 💌 over this	year 🔻 compared to degree days 💌	
Average use + for all facilities + today + compa	Cell color represents usage intensity; each row represents one day.		compared to previous day +
Cell size represents average use today. Cell color represents drift from avera	Can color represents Gage intensity, each row represents one day. Exe 2m day 6m fea	200 dyn dyn dyn hyn Llyn Llyn Headly Coning Gayne Byn	Resclored Park
Annu Annu Annu Annu Annu Annu Annu Annu			. Ash.
Robber Conten	30.4 cm		Ann
			1 V V VG
GA Platt Lane			hu
Tung Corter			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			un dun dina dina

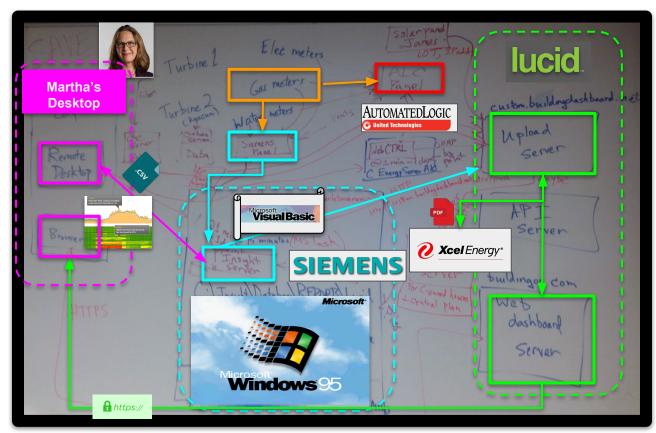


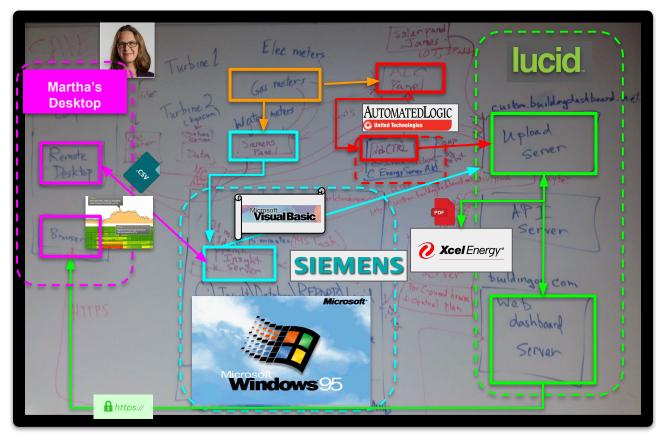


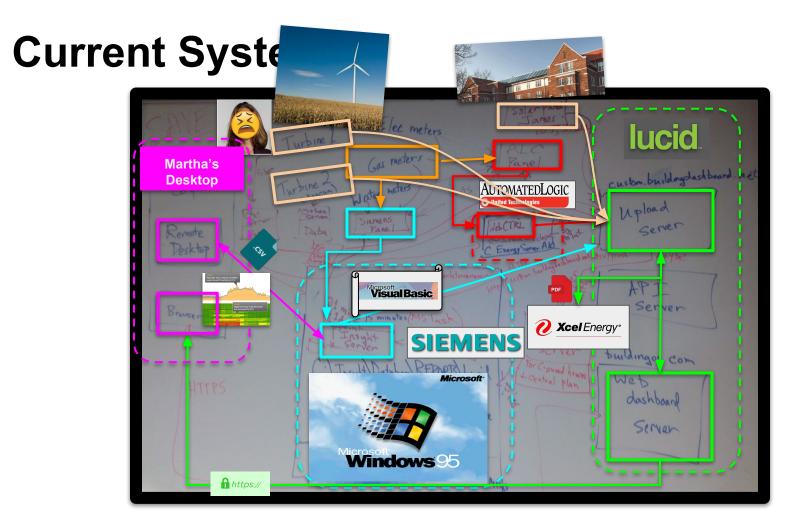


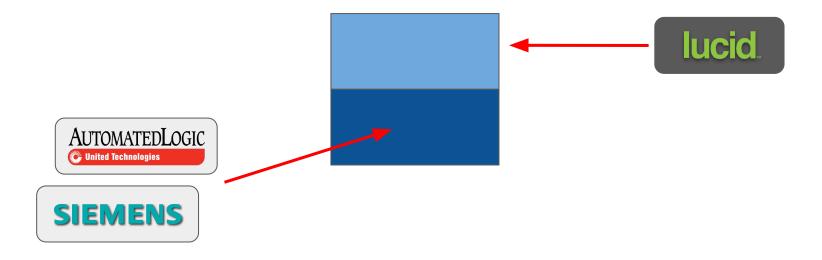






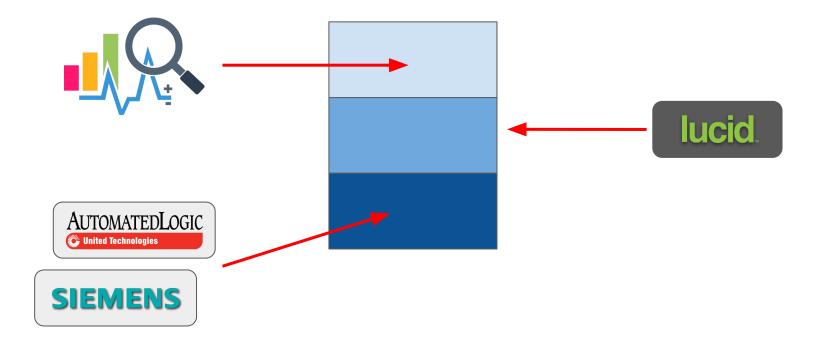


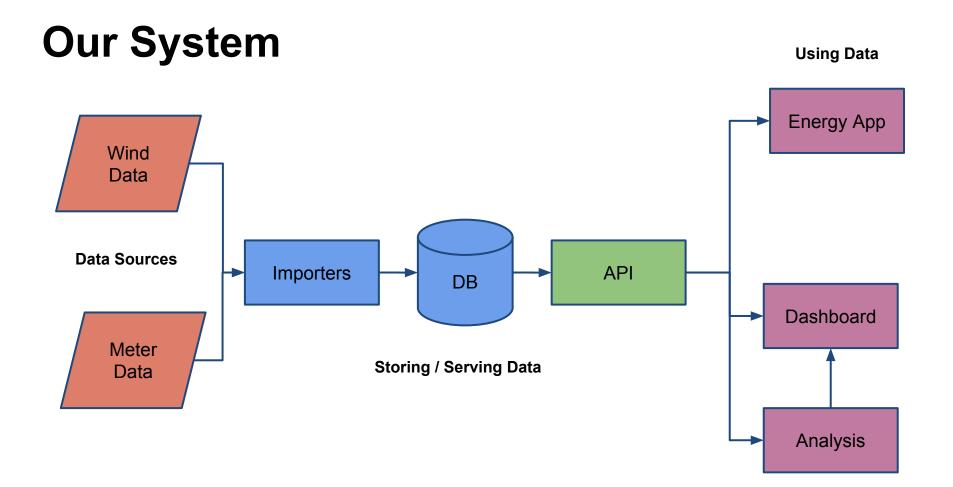




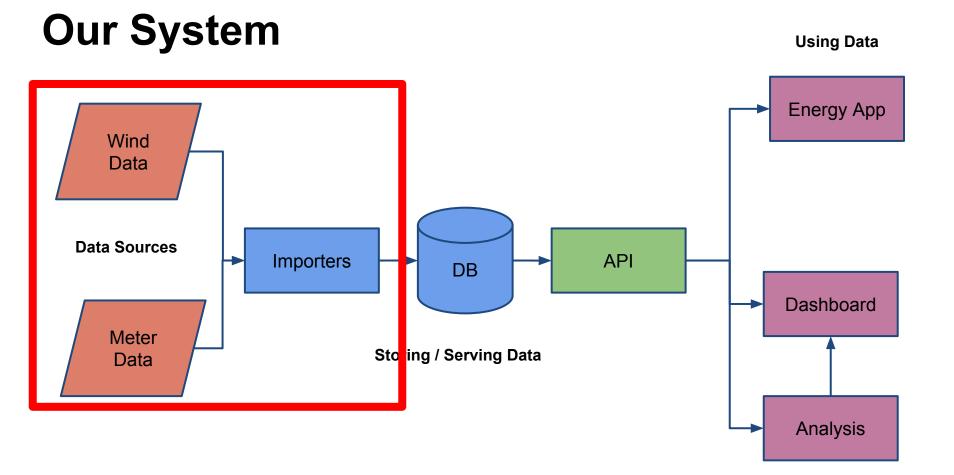
Our Task

- 1. What is energy analytics?
- 2. Why do we care?
- 3. Current System
- 4. Our Task


Our Task


1. Unify data into integrated system

Our Task


- 1. Unify data into integrated system
- 2. Enable new forms of analysis

problem data database api dashboard analysis conclusion

- 1. The Task
- 2. Within Industry
- 3. Examples
- 4. Tagging

Point Naming:

The Task Within Industry Examples Tagging

NOURSE.FIRE CH.FLH.E110.STP LIV54.ORGSTPT HU.R215.RSET **FACCLUB.ELEC** LIA3WA WCC-AHU14.MAT

Point Naming:

The Task Within Industry Examples Tagging

DOE Smart Buildings Roundtable – Summary

Martha Larson, Manager of Campus Energy & Sustainability February 6, 2018

> being done to develop machine learning algorithms that might help with this, but no fully automated solution exists at this point.

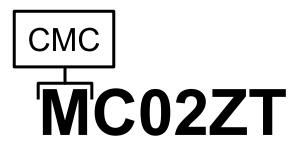
Inconsistent naming conventions are inevitable when using legacy systems and multiple BAS
platforms, but this presents serious challenges and time required to integrate BAS points into any
third-party platform (fault detection, scheduling, energy management, etc.)

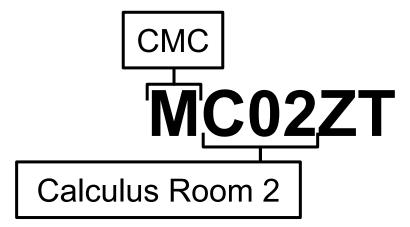
Inconsistent naming conventions are inevitable when using legacy systems and multiple BAS platforms, but this presents serious challenges and time required to integrate BAS points into any third-party platform (fault detection, scheduling, energy management, etc.)

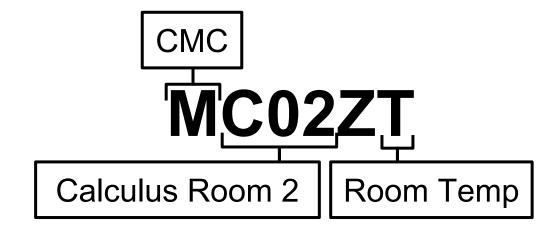
neutral entity can come up with a rating or certification system to help vet all the existing and emerging vendors.

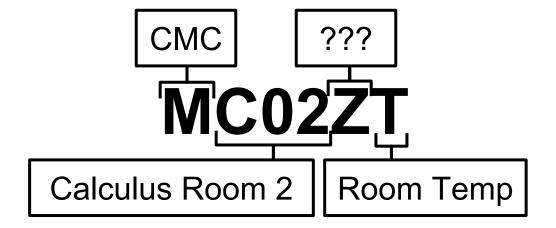
- Most participants adamantly conclude that the Building Automation System vendors (Siemens, ALC, Johnson, etc.) will NOT implement successful FDD tools. They believe that:
 - Products that BAS vendors have previewed to date are vasity deficient compared to tools
 developed by vendors focused solely on FDD. Those focused only on FDD commit all their
 resources to it whereas for BAS vendors it is a side project, not their core competency.
 - FDD products offered by a BAS vendor will come at higher cost since they already has us "locked in" to their product.
 - Having the BAS vendor detect faults in the BAS amounts to the "fox watching the henhouse". BAS vendors lack motivation to develop FDD tools which could highlight deficiencies in BAS devices, control sequences, schedules and system performance.
- Inconsistent BAS naming conventions are big challenges to deploying any FDD platform.
 Microsoft conducted a project to load all 185 of their buildings into the loanics FDD platform. It took 1-2 weeks per building, which added up to 2-3 years to map all points. The project was done in parallel with a similar effort at University of IA who was also at that time using locnics and doing most of their script writing via their in-house controls group.
- The project lead for the Microsoft iconics project (Darryl Smith) is now head of all building
 operations at Google where he is developing an in-house FDD software solution. Goals are a
 simple, user-friendly interface and more advanced machine learning tactics to deal with irregular
 naming conventions, point mapping issues and pattern recognition.
- University of IA has since dropped iconics in favor of KG?? Would be worth following up with Katie to learn more about what they are doing now and lessons learned from their trials.

The Task Within Industry Examples Tagging

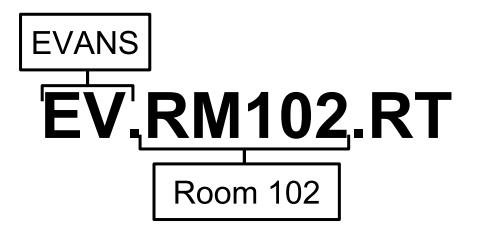

ACDIN.EF4



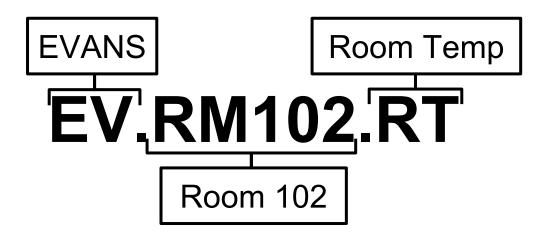


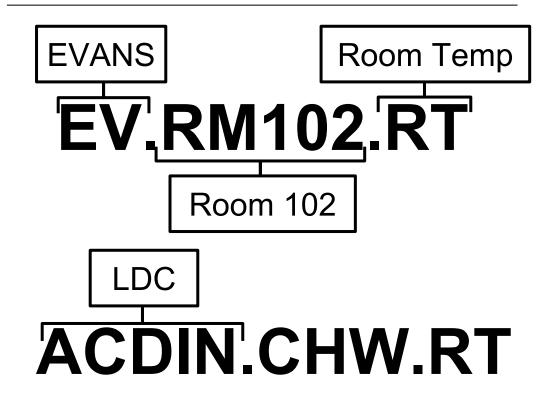

The Task Within Industry Examples Tagging

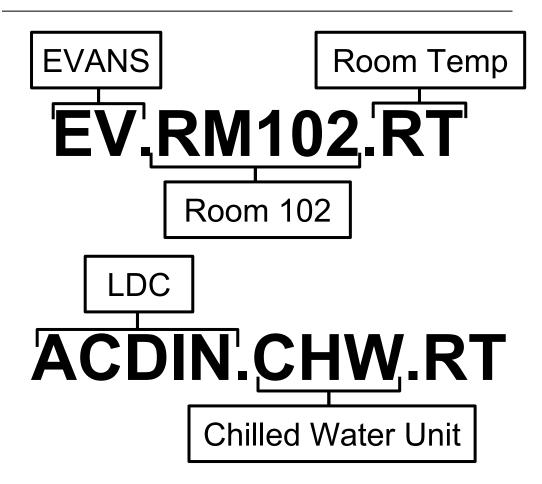
MC02ZT

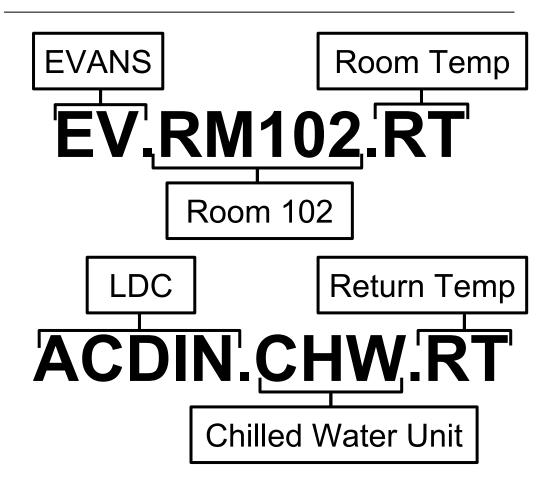

The Task Within Industry Examples Tagging

EV.RM102.RT


The Task Within Industry Examples Tagging


EVANS EV.RM102.RT


The Task Within Industry Examples Tagging



The Task Within Industry Examples Tagging

TAG

TAG

Unique Identifier

TAG

Unique Identifier

ROOMTEMP

TAG

Unique Identifier

ROOMTEMP

Parsing Information

TAG

Unique Identifier **ROOMTEMP**

Parsing Information

....

TAG

Type

Unique Identifier **ROOMTEMP**

Parsing Information

....

TAG

Type

Unique Identifier **ROOMTEMP**

Parsing Information

....

Measurement

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed?

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed? False

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed? False Human Readable Description

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed? False Human Readable Description Measurement of the temperature of

the room this point is located in.

Within Industry

The Task

Examples

Tagging

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed? False Human Readable Description Measurement of the temperature of the room this point is located in.

Units Information

Within Industry

The Task

Examples

Tagging

TAG **Unique Identifier** ROOMTEMP Parsing Information . . . Type Measurement Is Indexed? False Human Readable Description Measurement of the temperature of the room this point is located in.

Units Information

Degrees F

Point Naming: Types of Tags:

Point Naming:	Types of Tags:		
	Building		
The Task Within Industry Examples Tagging			

Point Naming:	Types	Types of Tags:		
	Building	Library		
The Task Within Industry Examples Tagging				

Point Naming:	Types	Types of Tags:			
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry Examples Tagging					

Point Naming:	Types	Types of Tags:			
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry	Room				
Examples Tagging					

Point Naming:	Types	Types of Tags:			
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry	Room	Room, 300			
Examples Tagging					

Point Naming:	Types of Tags:			
	Building	Library	LIV25.ORGSTPT	
The Task Within Industry	Room	Room, 300	HU. <mark>R300</mark> .RM	
Examples Tagging				

Point Naming:	Types of Tags:		
	Building	Library	LIV25.ORGSTPT
The Task Within Industry Examples	Room	Room, 300	HU. <mark>R300</mark> .RM
	Equipment		
Tagging			

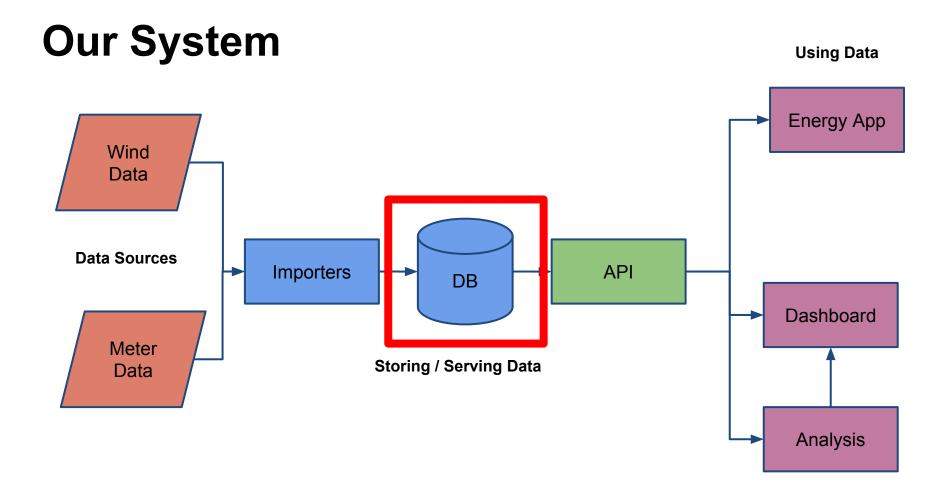
Point Naming:	Types of Tags:					
	Building	Library	LIV25.ORGSTPT			
The Task Within Industry	Room	Room, 300	HU. <mark>R300</mark> .RM			
Examples Tagging	Equipment	Air Handling Unit, 13				
lagging						

Point Naming:	Types of Tags:				
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM		
	Equipment	Air Handling Unit, 13	WCC-AHU13.MAT		
ragging		•			

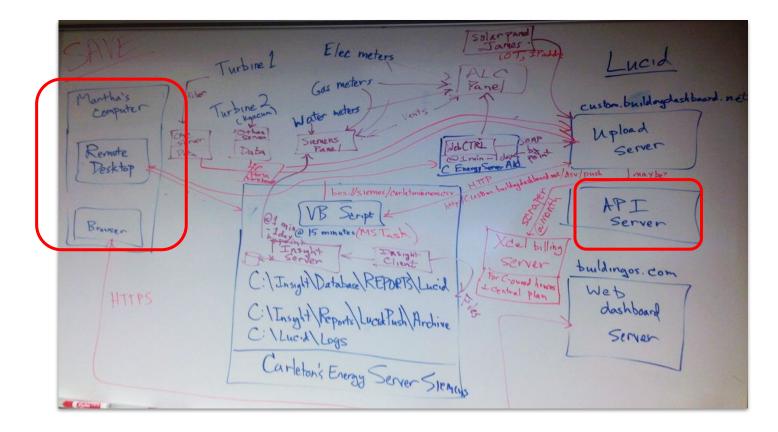
Point Naming:	Types of Tags:				
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM		
	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT		
ragging	Set Point				

Point Naming:	Types of Tags:					
	Building	Library	LIV25.ORGSTPT			
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM			
	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT			
ragging	Set Point	Room Temp				

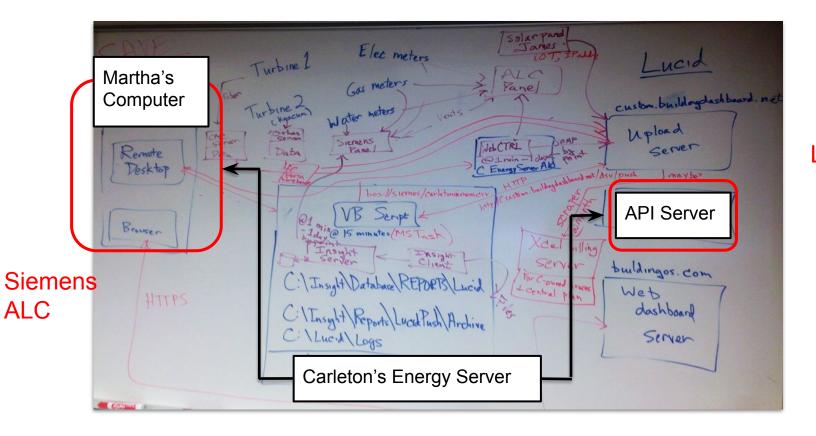
Point Naming:	: Types of Tags:					
	Building	Library	LIV25.ORGSTPT			
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM			
	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT			
	Set Point	Room Temp	HU.R2AA. <mark>RSE</mark> T			


Point Naming:	Types of Tags:				
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM		
	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT		
	Set Point	Room Temp	HU.R2AA. <mark>RSE</mark> T		
	Measurement				

Point Naming:	Types of Tags:				
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry	Room	Room, 300	HU. <mark>R300</mark> .RM		
Examples Tagging	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT		
	Set Point	Room Temp	HU.R2AA. <mark>RSE</mark> T		
	Measurement	Radiation Valve %			


Point Naming:	Types of Tags:				
	Building	Library	LIV25.ORGSTPT		
The Task Within Industry Examples Tagging	Room	Room, 300	HU. <mark>R300</mark> .RM		
	Equipment	Air Handling Unit, 13	WCC- <mark>AHU13</mark> .MAT		
	Set Point	Room Temp	HU.R2AA. <mark>RSE</mark> T		
	Measurement	Radiation Valve %	EV.RM211.V		

problem data database api dashboard analysis conclusion


- 1. How we get data
- 2. Importers
- 3. Overview of structure

Where We Get Data

Where We Get Data

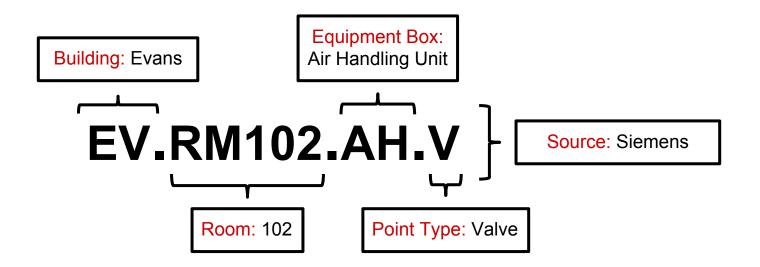
LUCID

Database: Importers

- CSV Dumps
- Name parsing
- Separate importers for Lucid and Siemens

Key Na	me:Suffix		Trend Defini	tions Used	1	
Point_1:	HU.R218.ECF	HU.R218.ECFM				
Point_2:	HU.R218.EXC	CFM	15 minutes			
Point_3:	HU.R218.OC	с	15 minutes	- Hud	inge CS	
Point_4:	HU.R218.RH	v	15 minutes	Tu	ings CS	5 V
Point_5:	HU.R218.RM		15 minutes			
⇔Date	Time	Point_1	Point_2	Point_3	Point_4	Point_5
8/18/17	0:00:00	422.53	4.23	OFF	7.83	64.26
8/18/17	0:15:00	409.94	4.1	OFF	7.8	64.25
8/18/17	0:30:00	403.05	4.03	OFF	7.8	64.25
8/18/17	0:45:00	419.96	4.2	OFF	7.78	64.24
8/18/17	1:00:00	409.94	4.1	OFF	7.81	64.26
8/18/17	1:15:00	416.64	4.17	OFF	7.76	64.23
8/18/17	1:30:00	420.08	4.2	OFF	7.83	64.27
8/18/17	1:45:00	412.9	4.13	OFF	7.84	64.27
8/18/17	2:00:00	416.86	4.17	OFF	7.76	64.23

Database: Importers


- CSV Dumps
- Name parsing
- Separate importers for Lucid and Siemens

Key	Na	me:Suffix		Trend Defini	tions Used		
Point_1:		HU.R218.ECF	M	15 minutes			
Point_2:		HU.R218.EXC	FM	15 minutes			
Point_3:		HU.R218.OC	C	15 minutes	L L L	inge CS	
Point_4:		HU.R218.RH	V	15 minutes	nui	ings CS	5 V
Point_5:		HU.R218.RM		15 minutes			
◇Date		Time	Point_1	Point_2	Point_3	Point_4	Point_5
8/18	/17	0:00:00	422.53	4.23	OFF	7.83	64.26
8/18	/17	0:15:00	409.94	4.1	OFF	7.8	64.25
8/18	/17	0:30:00	403.05	4.03	OFF	7.8	64.25
8/18	/17	0:45:00	419.96	4.2	OFF	7.78	64.24
8/18	/17	1:00:00	409.94	4.1	OFF	7.81	64.26
8/18	/17	1:15:00	416.64	4.17	OFF	7.76	64.23
8/18	/17	1:30:00	420.08	4.2	OFF	7.83	64.27
8/18	/17	1:45:00	412.9	4.13	OFF	7.84	64.27
8/18	/17	2:00:00	416.86	4.17	OFF	7.76	64.23

Database: Importers

- CSV Dumps
- Name parsing
- Separate importers for Lucid and Siemens

Key Na	me:Suffix		Trend Defini	tions Used	-	
Point_1:	HU.R218.ECF	M	15 minutes			
Point_2:	HU.R218.EXC	FM	15 minutes			
Point_3:	HU.R218.OC	C	15 minutes	البياط ا	nge CS	21/
Point_4:	HU.R218.RH	V	15 minutes	i iui	ngs CS	5 V
Point_5:	HU.R218.RM		15 minutes			
⇔Date	Time	Point_1	Point_2	Point_3	Point_4	Point_5
8/18/17	0:00:00	422.53	4.23	OFF	7.83	64.26
8/18/17	0:15:00	409.94	4.1	OFF	7.8	64.25
8/18/17	0:30:00	403.05	4.03	OFF	7.8	64.25
8/18/17	0:45:00	419.96	4.2	OFF	7.78	64.24
8/18/17	1:00:00	409.94	4.1	OFF	7.81	64.26
8/18/17	1:15:00	416.64	4.17	OFF	7.76	64.23
8/18/17	1:30:00	420.08	4.2	OFF	7.83	64.27
8/18/17	1:45:00	412.9	4.13	OFF	7.84	64.27
8/18/17	2:00:00	416.86	4.17	OFF	7.76	64.23

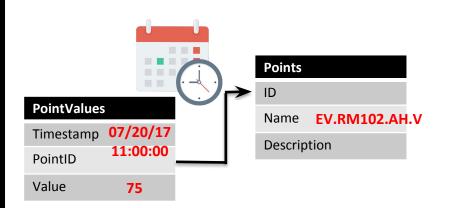
Points

ID

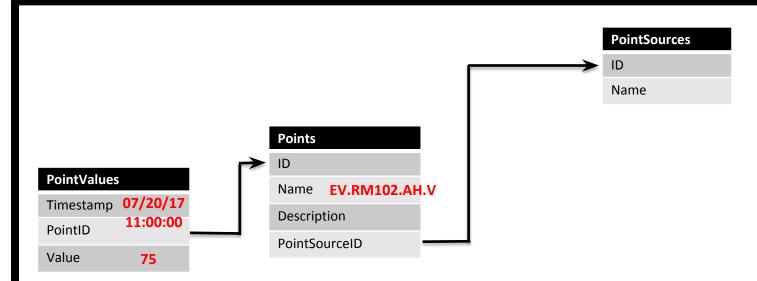
Name

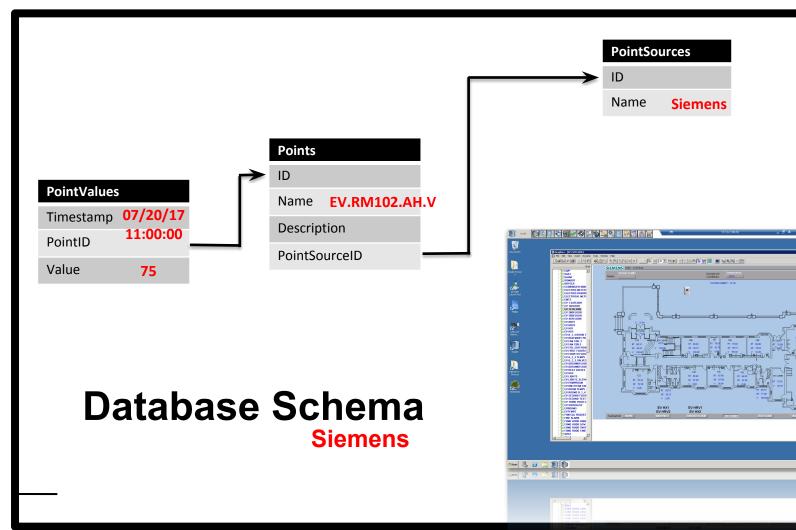
Description

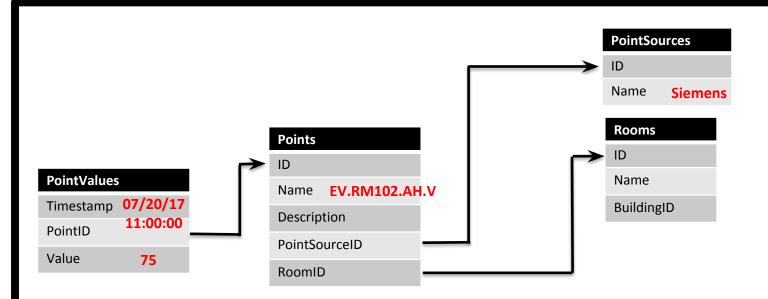
Points

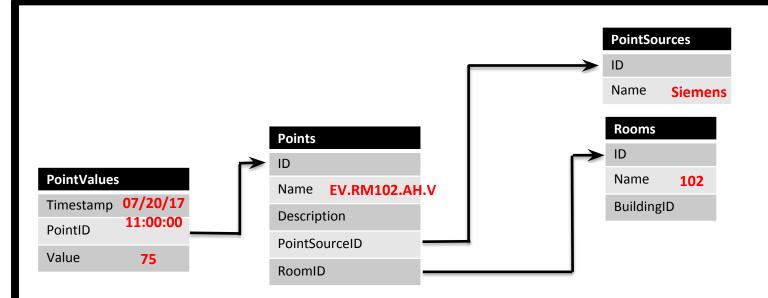

ID

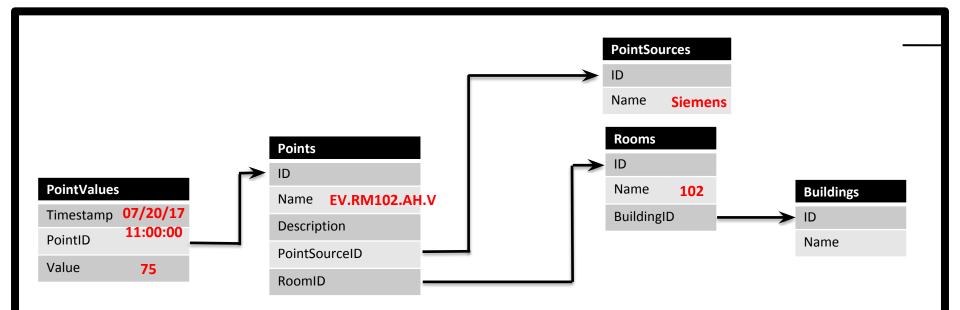
Name EV.RM102.AH.V

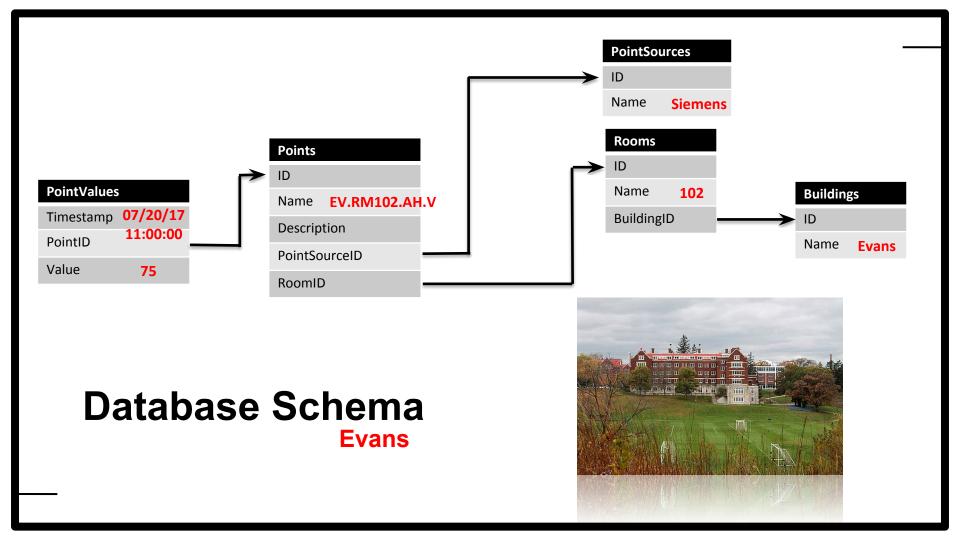

Description

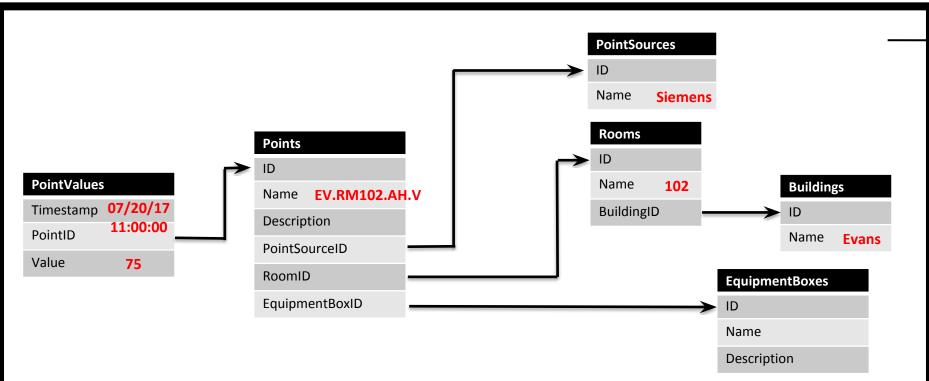

Database Schema EV.RM102.AH.V

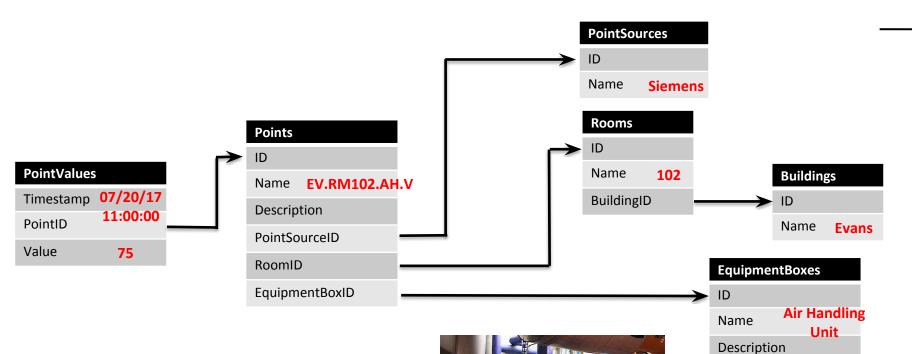

		Points	
		ID	
PointValues		Name	EV.RM102.AH.V
Timestamp		Description	
PointID		Descrip	
Value			

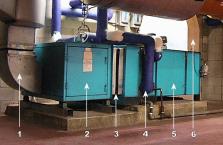


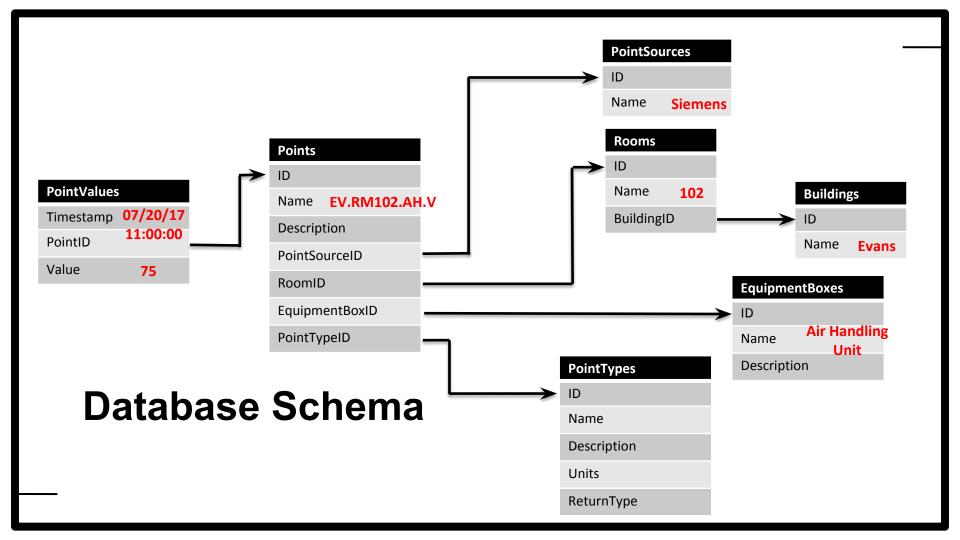

75

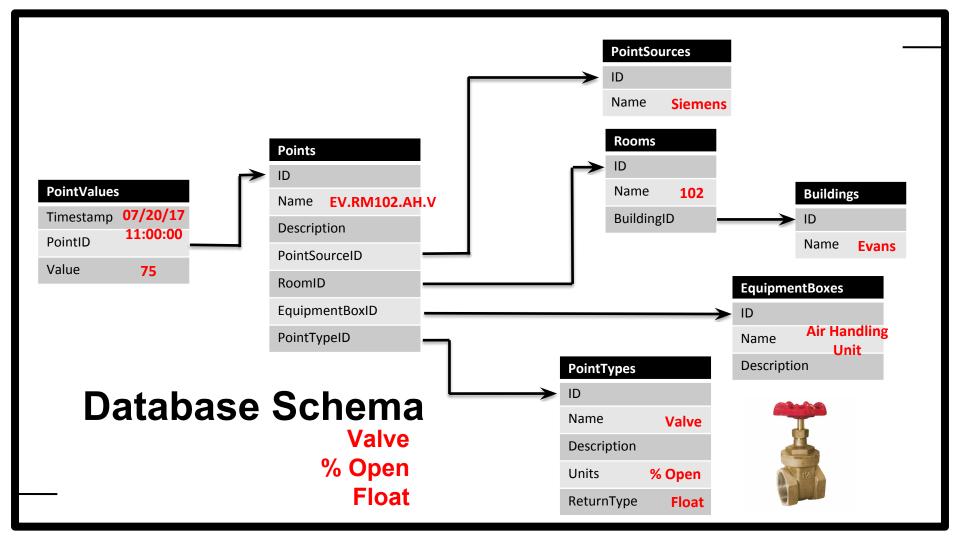




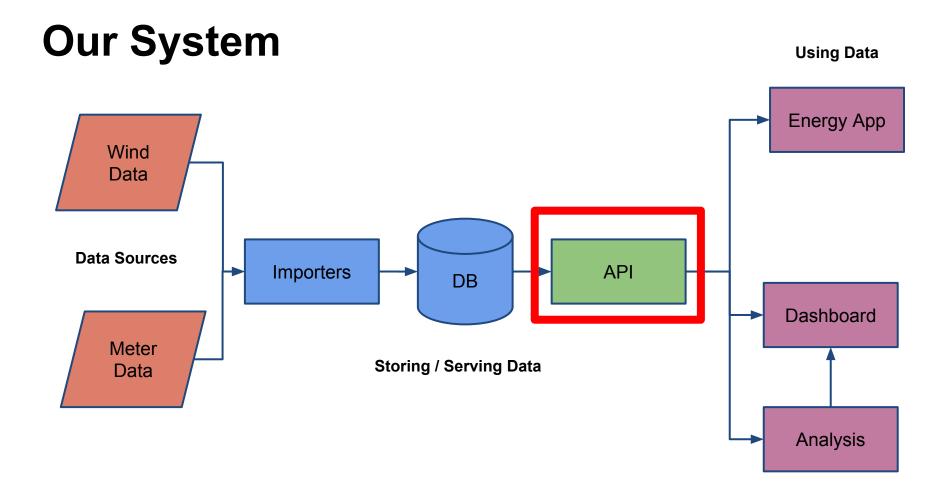








Database Schema Air Handling Unit



problem data database api dashboard analysis conclusion

- 1. Why?
- 2. What do we want?
- 3. How do we get it?

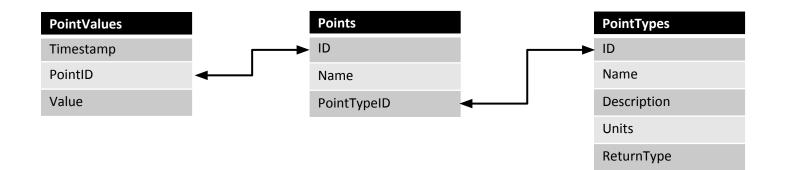
Use Cases

- What are all the buildings on campus?
- What are the names of all the points in Hulings?
- What were the temperatures in Evans 204 last week?

What do we want to return?

PointSources	Rooms
ID	ID
Name	Name
	BuildingI
EquipmentBoxes	PointTyp
EquipmentBoxes	PointTyp ID
ID	ID
ID Name	ID Name

Buildings
ID
Name


Points
ID
Name
Description
PointSourceID
RoomID
EquipmentBoxID
PointTypeID

PointValues
Timestamp

PointID

Value

Limited Subset

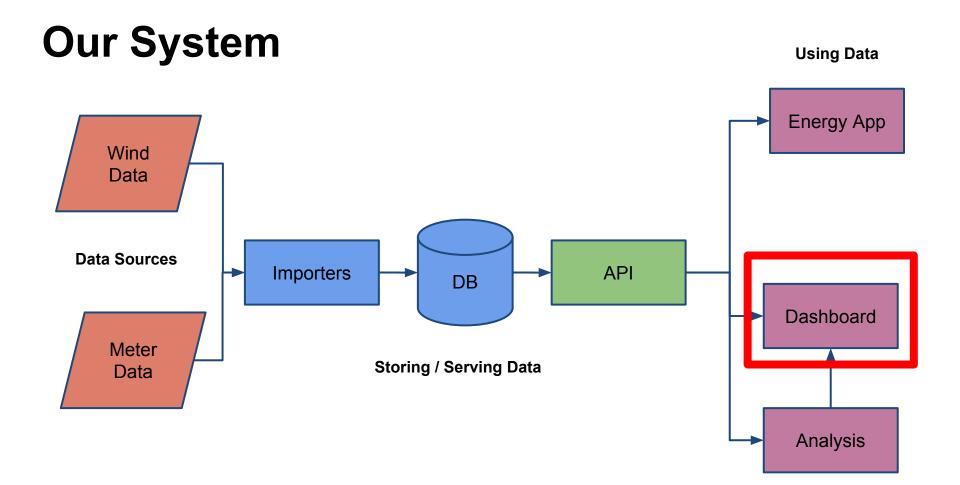
Interpret Data

PointTimestamp	PointID	PointValue
2015-08-10 00:00:00	450	19,800,024
2015-08-10 00:00:00	212	21
2015-08-10 00:00:00	416	1

Interpret Data

PointTimestamp	PointID	PointValue	Return Type	Factor	Output
2015-08-10 00:00:00	450	19,800,024	float	5	198.00024
2015-08-10 00:00:00	212	21	float	0	21
2015-08-10 00:00:00	416	1	bool	416	True

Interpret Data

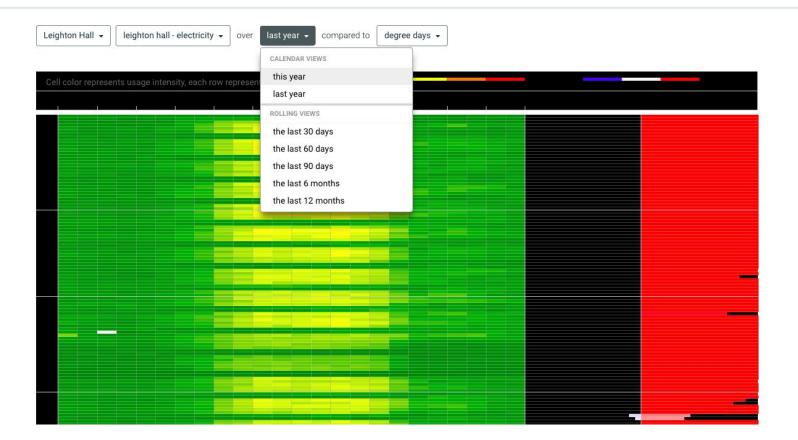

 PointTimestamp	PointID	PointValue	Return Type	Factor	Output
2015-08-10 00:00:00	450	19,800,024	float	5	198.00024
2015-08-10 00:00:00	212	21	float	0	21
2015-08-10 00:00:00	416	1	bool	416	True

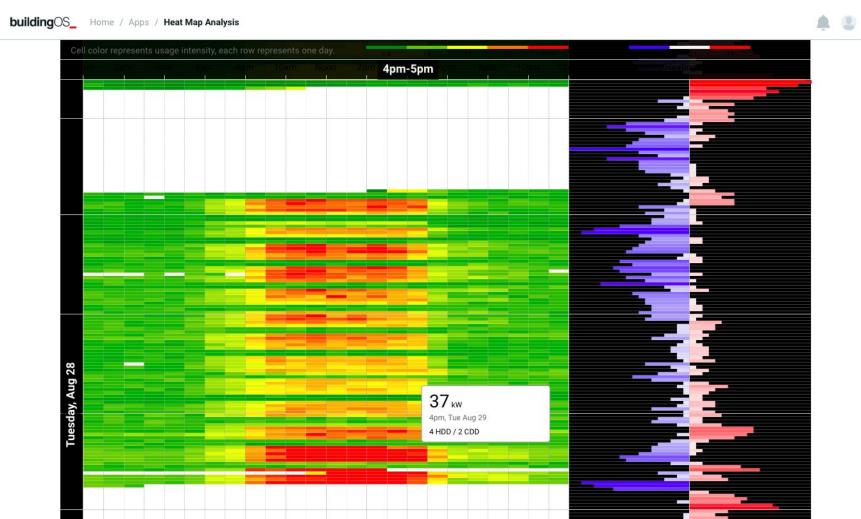
Interpret Data

PointTimestamp	PointID	PointValue	Return Type	Factor	Output
2015-08-10 00:00:00	450	19,800,024	float	5	198.00024
2015-08-10 00:00:00	212	21	float	0	21
2015-08-10 00:00:00	416	1	bool	416	True

problem data database api dashboard analysis conclusion

- 1. Background
- 2. Comparison
- 3. Heatmap
- 4. Alerts
- 5. Room Explorer




What is the current solution?

• Lucid does not allow for side-by-side comparisons, nor custom date selections.

Heat Map Analysis

Jump to 🗸

What is the current solution?

- Lucid does not allow for side-by-side comparisons, nor custom date selections.
- ALC and Siemens do not have any effective built-in options for data visualization or analysis.

What is the current solution?

- Lucid does not allow for side-by-side comparisons, nor custom date selections.
- ALC and Siemens do not have any effective built-in options for data visualization or analysis.
- No easy solution exists for comparing data from different sources. Facilities instead has to collate the data manually.

How can we improve this?

Provide proof-of-concept solutions for the common problems:

• Side-by-side comparisons

How can we improve this?

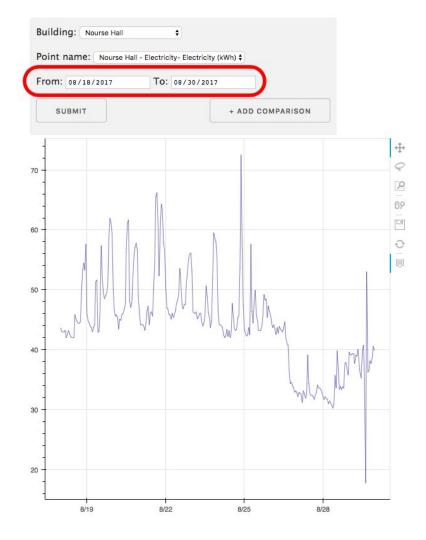
Provide proof-of-concept solutions for the common problems:

- Side-by-side comparisons
- Improvements on the heatmap tool

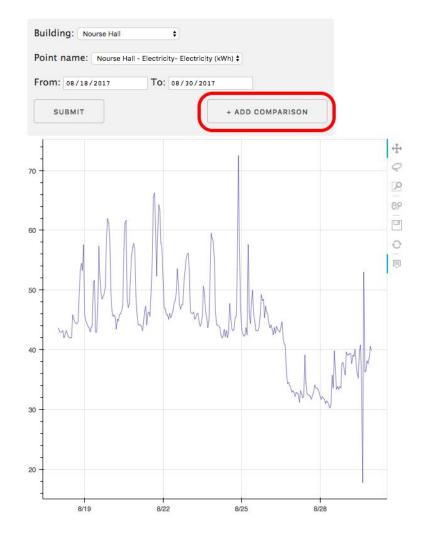
How can we improve this?

Provide proof-of-concept solutions for the common problems:

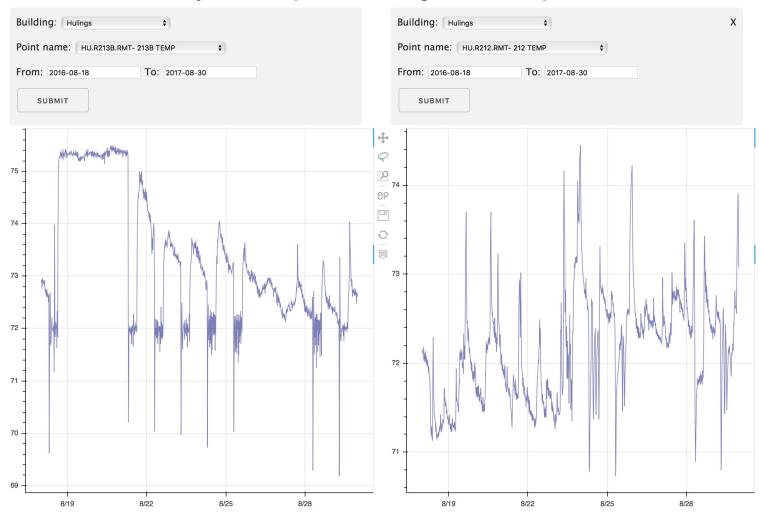
- Side-by-side comparisons
- Improvements on the heatmap tool
- Rudimentary anomaly detection


Dashboard: Comparisons

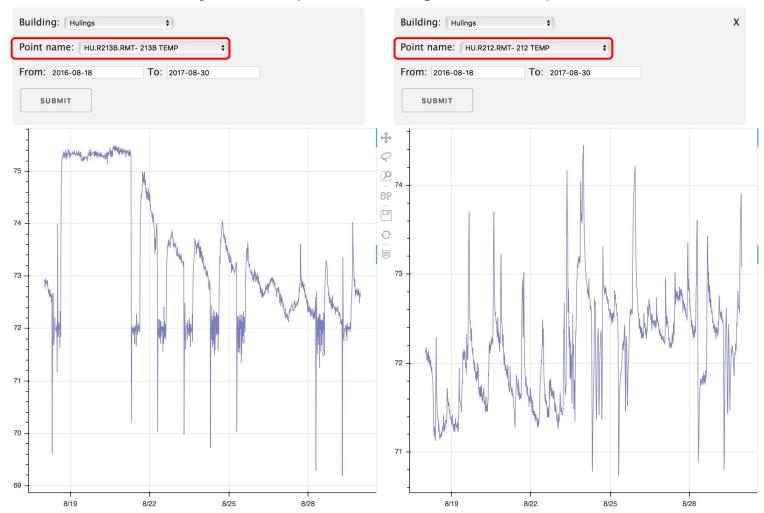
• Custom point selectors


Dashboard: Comparisons

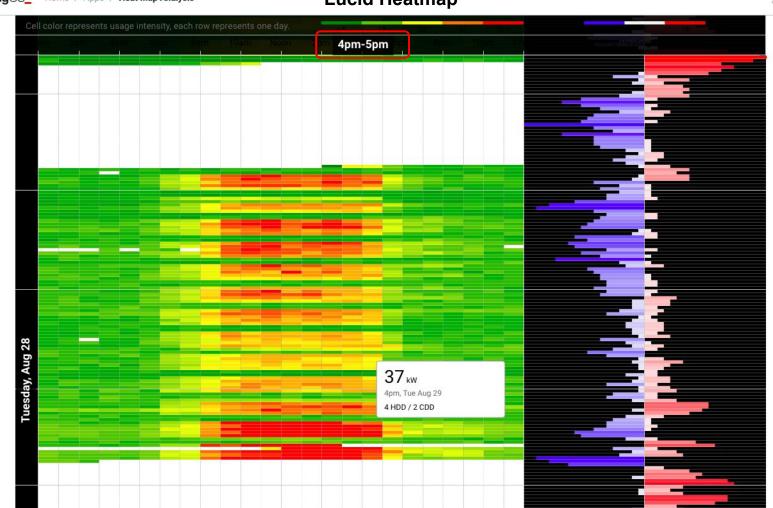
- Custom point selectors
- Custom time ranges



Dashboard: Comparisons

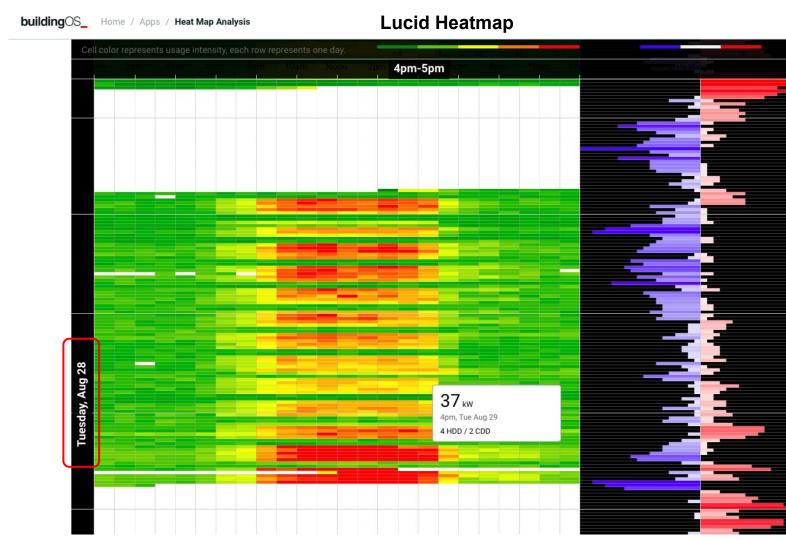

- Custom point selectors
- Custom time ranges
- Side-by-side comparisons

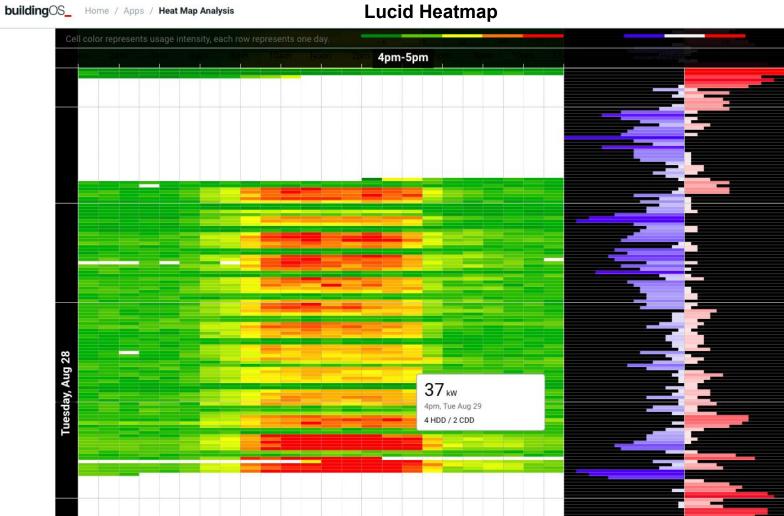
Side-by-side comparison: Hulings Room Temperature


Side-by-side comparison: Hulings Room Temperature

Dashboard: Heatmap

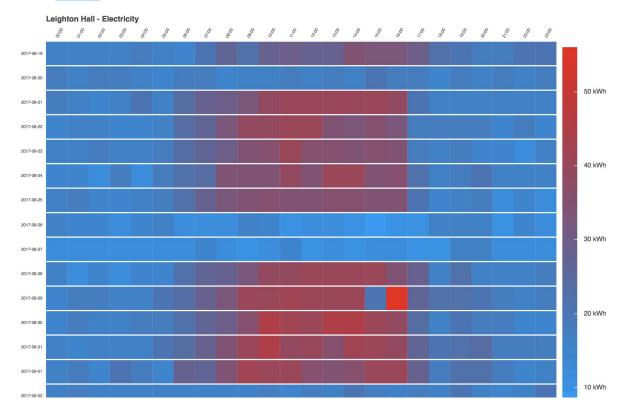
Features we wanted:

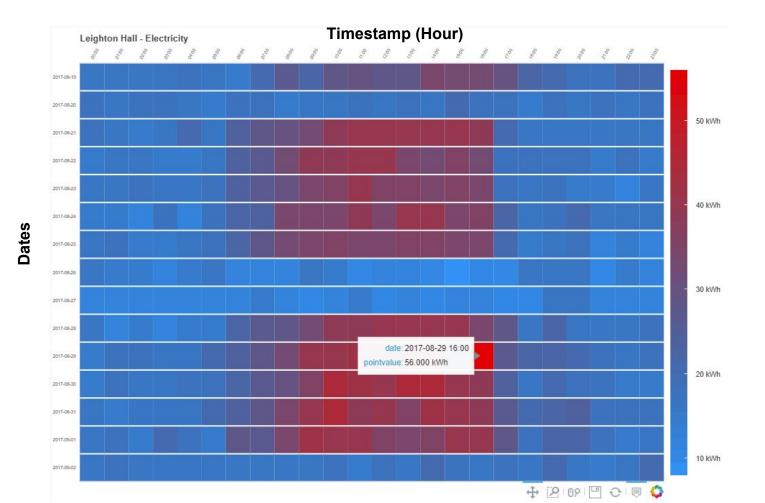

- Custom date and point selection
- Different presets for the colors
- Ability to hover over text and see values for a given point

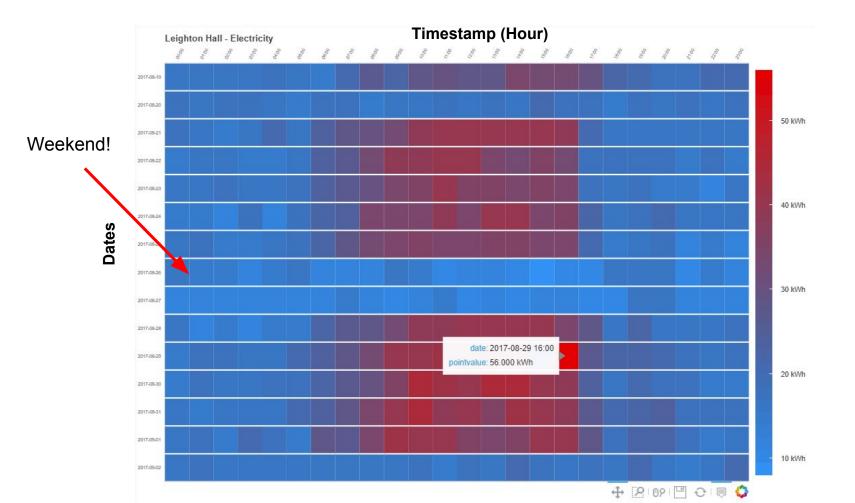


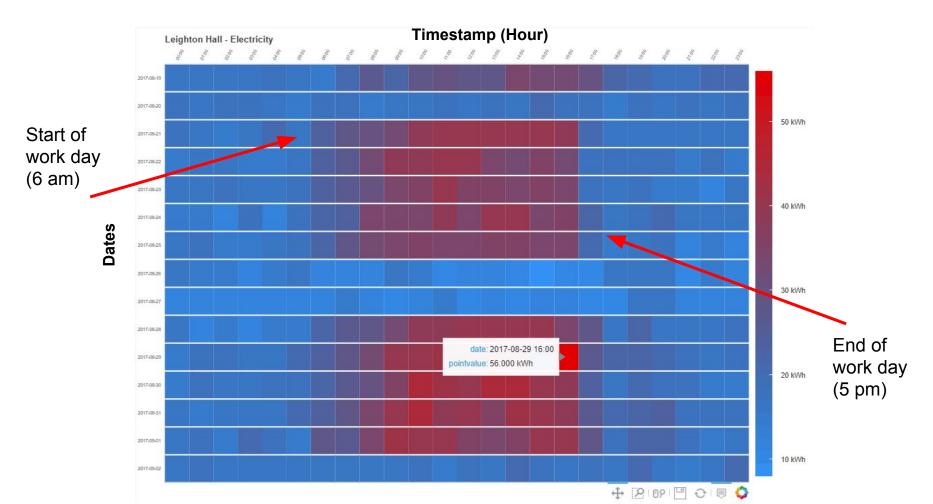
buildingOS_ Home / Apps / Heat Map Analysis

Lucid Heatmap


A C






TO: 2017-08-19 TO: 2017-09-03	Building: Leighton H	Hall 💠 Point name	2: Leighton Hall - Electricity - Electricity (kWh)
SUBMIT	From: 2017-08-19	To: 2017-09-03	
	SUBMIT		

Colors: Red-Blue \$

Dashboard: Alerts

Very basic metric for anomalies: flag points that are three standard deviations away from the mean of all values over the selected time frame.

Useful as a "proof-of-concept" in case we didn't get to other, fancier analysis for the dashboard.

Alerts Page: Nourse Electricity Consumption

1: 08/18/2017	То: 08/30/2017	
SUBMIT		
		MMM
		Y

Point Name: Nourse Hall – Electricity Average: 44.28 Standard Deviation: 7.91

Date/Time	Value (kWh)
2017-08-24 21:00:00	72.50
2017-08-29 15:00:00	17.75

Alerts Page: Nourse Electricity Consumption

Date: 2017-08-24 21:00 Value: 72.258	burse Hall - Electricity-	Electricity (kWh) \$
Date: 2017-08-24 21:00 Value: 72.258	om: 08/18/2017	To: 08/30/2017
Value: 72.258	SUBMIT	

Point Name: Nourse Hall – Electricity Average: 44.28 Standard Deviation: 7.91

Date/Time	Value (kWh)
2017-08-24 21:00:00	72.50
2017-08-29 15:00:00	17.75

Dashboard: Room Inspection

Facilities' Experiment: How far can we push our current radiators?

Dashboard: Room Inspection

Facilities' Experiment: How far can we push our current radiators?

Our Solution: Build a tool that can display the room temperature and the radiator valve percentage for each room in a building and detect "anomalous points".

• Displays the room temperature and radiator valve percentage

Building:			
Evans Hall	-		
Date:	~		
12 / 26 / 2017 (Timestamp:			
00:00:00			
Detect Anon	nalies:		
SUBMIT			
_			
Room	Room Temp (deg F)	Valve Percent (%)	
002	67.05	0.0	

Room	Room Temp (deg F)	Valve Percent (%)
003	67.85	0.0
102	68.1	100.0
106	61.58	19.86
107	70.58	40.01
108	66.05	100.0
109	69.18	40.43

- Displays the room temperature and radiator valve percentage
- Permits viewing a "snapshot" of room temperature and valve percentage points for a building.

Building:			
Evans Hall	•		
Date:			
12 / 26 / 2017 🕲			
Timestamp:			
Detect Anomalie	s:		
SUBMIT			

Room	Room Temp (deg F)	Valve Percent (%)
003	67.85	0.0
102	68.1	100.0
106	61.58	19.86
107	70.58	40.01
108	66.05	100.0
109	69.18	40.43

- Displays the room temperature and radiator valve percentage
- Permits viewing a "snapshot" of room temperature and valve percentage points for a building.
- Optional Detect Anomalies feature

Building:		
Evans Hall	•	
Date:		
12 / 26 / 2017 🕲		
Timestamp:		
00:00:00		
Detect Anomalies:)	
SUBMIT		

Room	Room Temp (deg F)	Valve Percent (%)	
003	67.85	0.0	
102	68.1	100.0	
106	61.58	19.86	
107	70.58	40.01	
108	66.05	100.0	
109	69.18	40.43	

• Performs k-means clustering to detect points that appear anomalous

Evans Hall	+
Date:	
12/06/2017]
Timestamp:	
15:30:00 \$	
Detect Anomalie	s:
SUBMIT	

Room	Room Temp (deg F)	Valve Percent (%)
003	69.11	0.0
102	69.25	100.0
106	62.09	14.89
107	70.15	35.32
108	62.27	100.0
109	69.72	18.01
111	67.81	99.99
112	67.27	100.0


- Performs k-means clustering to detect points that appear anomalous
- Colors the cells to provide an indicator of which points appear as anomalous for that day

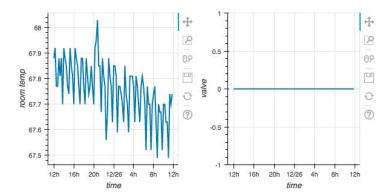
Evans Hall	ŧ
Date:	
12/06/2017	
Timestamp:	
15:30:00 \$	
Detect Anomalie	s:
2	
SUBMIT	

Building:

Room	Room Temp (deg F)	Valve Percent (%)
003	69.11	0.0
102	69.25	100.0
106	62.09	14.89
107	70.15	35.32
108	62.27	100.0
109	69.72	18.01
111	67.81	99.99
112	67.27	100.0

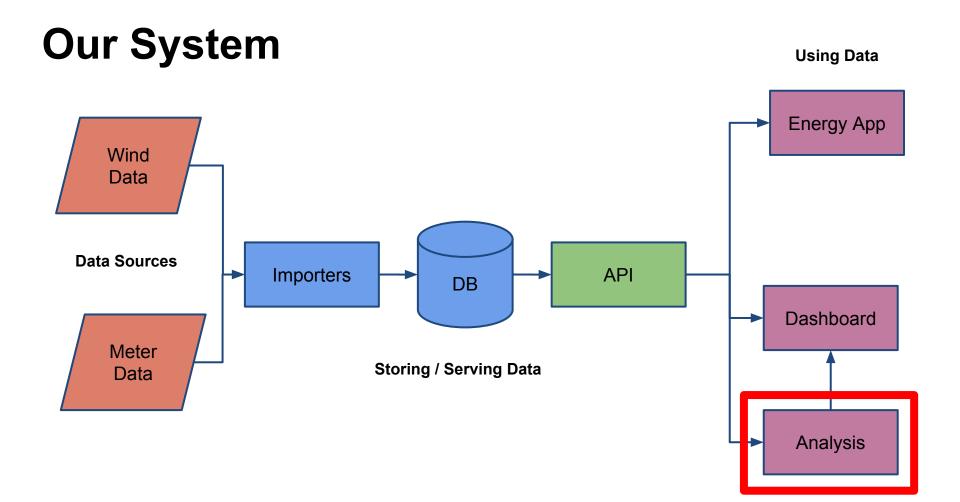
Dashboard: Room Inspection

100.0


108

109

66.05


69.18

Evans Hall, Room: 003

problem data database api dashboard analysis conclusion

- 1. Our data
- 2. Decision Trees
- 3. Association Rules
- 4. Anomaly Detection

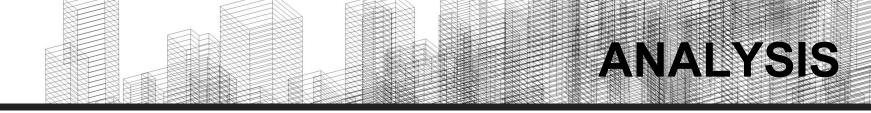
What data do we have to work with?

	EV.RM203.RT	ACDIN.EF1	Evans Hall - Electricity	BI1DSP
2017-12-20 00:00:00	67.2	ON	71.41	1.5
2017-12-20 01:00:00	67.4	OFF	50.92	1.49
2017-12-20 02:00:00	68.1	OFF	<null></null>	1.5

What data do we have to work with?

Most points are

We have no idea what this point means

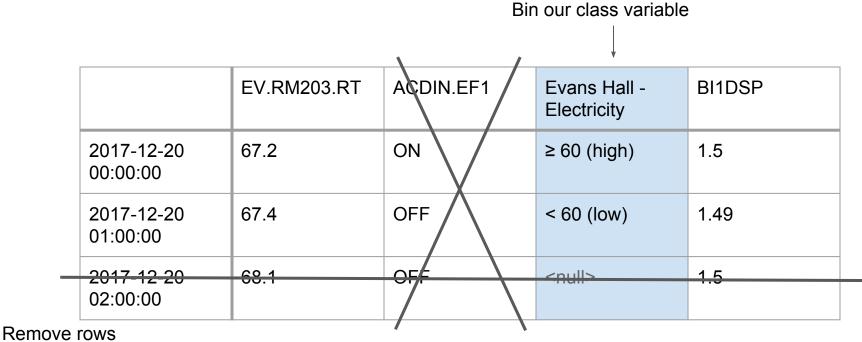

		gonoar	means
EV.RM203.RT	ACDIN.EF1	Evans Hall - Electricity	BI1DSP *
67.2	ON	71.41	1.5
67.4	OFF	50.92	1.49
68.1	OFF	<null></null>	1.5
	JS EV.RM203.RT 67.2 67.4	IS EV.RM203.RT ACDIN.EF1 67.2 ON 67.4 OFF	JSImage: Construction of the second seco

Some points are categorical

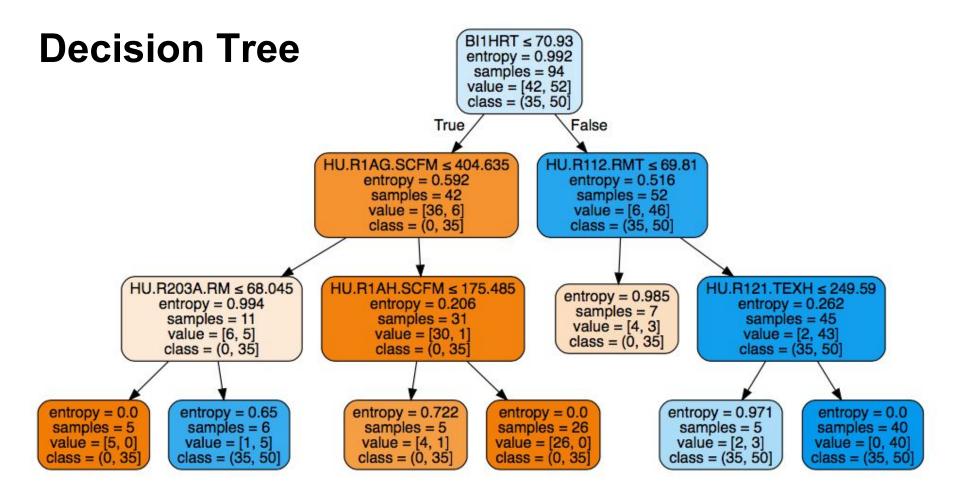
Some points are missing data

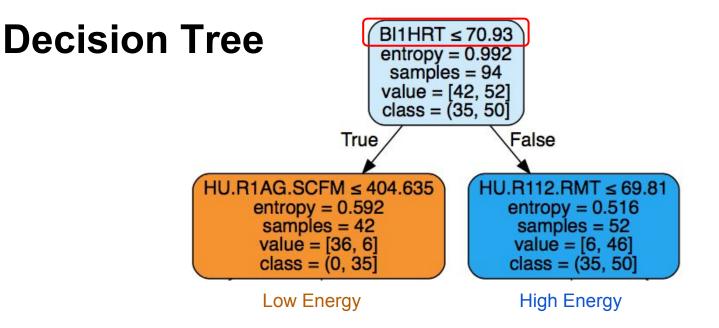
What could we use to analyze this data?

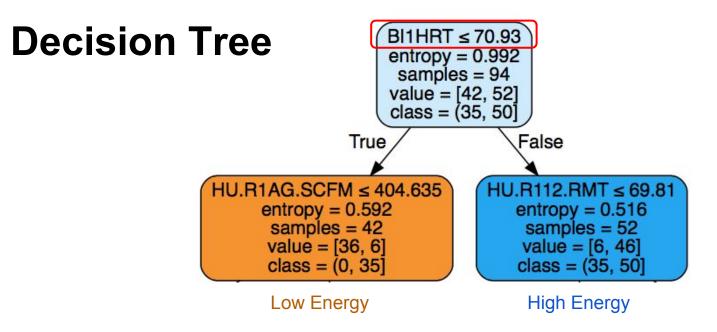
- Unsupervised
- Data-driven
- Not too complex

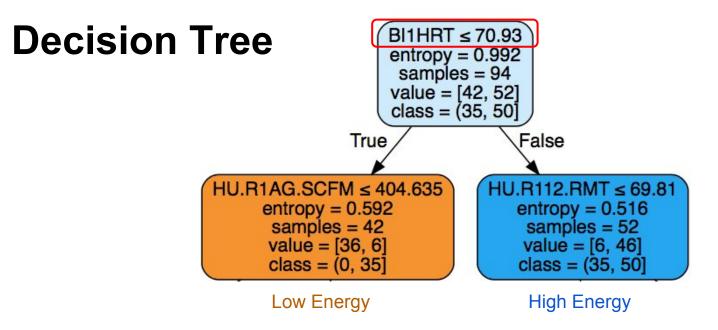


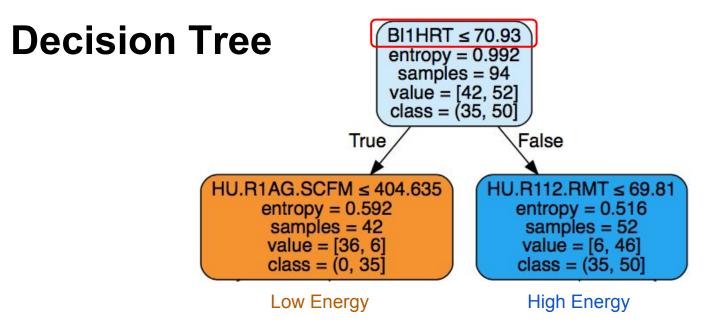
Decision Trees


Goal: Identify points of interest based on their placement in a decision tree




with null values

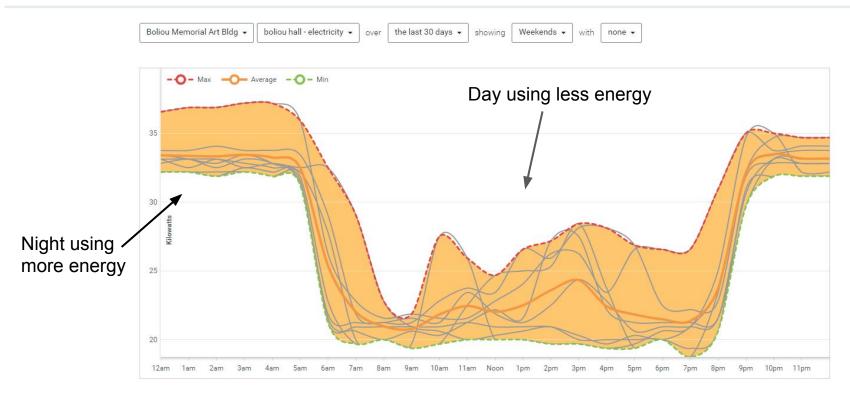

Ignore categorical variables



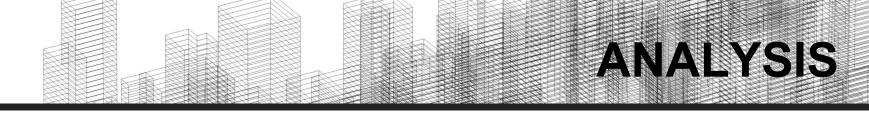
"Hulings typically uses more energy when this temperature is higher than 70 °F"*

"Hulings typically uses more energy when this temperature is higher than 70 °F"*

*On a specific day in August

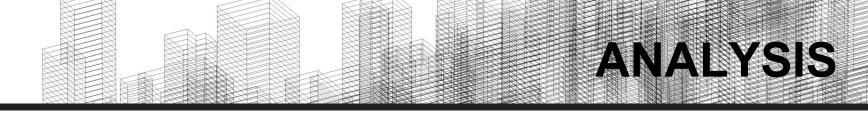

"Hulings typically uses more energy when this temperature is higher than 70 °F"*

*On a specific day in August


*Which probably just means it's hot outside

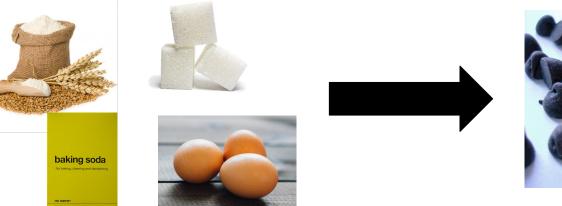
Cool problem: Boliou

Load Profile Analysis


| Date | Time | BO.1.COMM |
|--------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 6/1/16 | 0:00:00 | No Data |
| 6/1/16 | 0:15:00 | No Data |
| 6/1/16 | 0:30:00 | No Data |
| 6/1/16 | 0:45:00 | No Data |
| 6/1/16 | 1:00:00 | No Data |
| 6/1/16 | 1:15:00 | No Data |
| 6/1/16 | 1:30:00 | No Data |
| 6/1/16 | 1:45:00 | No Data |
| 6/1/16 | 2:00:00 | No Data |
| 6/1/16 | 2:15:00 | No Data |
| 6/1/16 | 2:30:00 | No Data |
| 6/1/16 | 2:45:00 | No Data |
| 6/1/16 | 3:00:00 | No Data |
| 6/1/16 | 3:15:00 | No Data |
| 6/1/16 | 3:30:00 | No Data |
| 6/1/16 | 3:45:00 | No Data |
| 6/1/16 | 4:00:00 | No Data |
| 6/1/16 | 4:15:00 | No Data |
| 6/1/16 | 4:30:00 | No Data |
| 6/1/16 | 4:45:00 | No Data |

Association Rules

Goal: Identify links between points and points of interest


Data requirements: Boolean if data value is present or not

Association Rules

Goal: Identify links between points and points of interest

Data requirements: Boolean if data value is present or not

One hot encoding	9.		
	EV.RM203.RT	ACDIN.EF1	Evans Hall - Electricity
2017-12-20 00:00:00	71	OIN	65
2017-12-20 01:00:00	68	OFF	55

One hot enco	ding:		
	EV.RM203.RT	ACDIN.EF1	Evans Hall - Electricity
2017-12-20 00:00:00	>= 70	OIN	65
2017-12-20 01:00:00	<70	OFF	55

	EV.RM203.RT < 70	EV.RM203.RT >= 70	ACD	IN.EF1	Evans Hall - Electricity
2017-12-20 00:00:00	FALSE	TRUE	ON		65
2017-12-20 01:00:00	TRUE	FALSE	ØFF		55
	Ľ)		1

	EV.RM203.RT < 70	EV.RM203.RT >= 70	ACDIN.EF1	Evans Hall - Electricity
2017-12-20 00:00:00	FALSE	TRUE	ON	65
2017-12-20 01:00:00	TRUE	FALSE	OFF	55
)

			(
	EV.RM203.RT < 70	EV.RM203.R >= 70	Г	ACDIN.EF1 = ON	ACDIN.EF1 = OFF		vans Hall - ectricity
2017-12-20 00:00:00	FALSE	TRUE		TRUE	FALSE	6	i i
2017-12-20 01:00:00	TRUE	FALSE		FALSE	TRUE	5	5
					1		

	EV.RM203. RT < 70	EV.RM203. RT >= 70	ACDIN.EF 1 = ON	ACDIN.EF 1 = OFF	Evans Hall - Electricity ≥ 50	Evans Hall - Electricity < 50
2017-12-20 00:00:00	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE
2017-12-20 01:00:00	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE

Association Rules

Evans Unit 4 Heat Coil Valve < 49.26

Evans Unit 5 Heat Coil Valve < 49.26

Info	Supp	Conf	Covr	Strg	Lift	Levr	Antecedent V		Consequent
Number of rules: 100000	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM102.RT=0.0	-	EV.RM003.RT=0.0
Filtered rules: 100000	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM102.RT=0.0	→	EV.RM003.V=0.0
Selected rules: 0 Selected examples: 0	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	→	EV.RM102.RT=0.0
beletted examples. o	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	→	EV.RM102.V=0.0
Find association rules	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM102.V=0.0	→	EV.RM003.RT=0.0
Minimal support:	3% 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM102.V=0.0	-	EV.RM003.V=0.0
Minimal confidence:	- 4% 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	-	EV.RM106.RT=0.0
<u> </u>	100000 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM106.RT=0.0	-	EV.RM003.RT=0.0
Induce classification (itemset → cla	1000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM106.RT=0.0	-	EV.RM003.V=0.0
	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	-+	EV.RM106.V=0.0
Find Rules	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM106.V=0.0	-	EV.RM003.RT=0.0
	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM106.V=0.0	-	EV.RM003.V=0.0
Filter rules	◎ 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	→	EV.RM107.RT=0.0
Antecedent	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM107.RT=0.0	→	EV.RM003.RT=0.0
Contains:	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM107.RT=0.0	→	EV.RM003.V=0.0
Min. items: 1 🗘 Max. items: 99	99 0 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	→	EV.RM107.V=0.0
	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM107.V=0.0	-	EV.RM003.RT=0.0
Consequent	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM107.V=0.0	→	EV.RM003.V=0.0
Contains:	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM003.V=0.0	-	EV.RM108.RT=0.0
Min. items: 1 🗘 Max. items: 99	99 0 1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.V=0.0, EV.RM108.RT=0.0	→	EV.RM003.RT=0.0
Apply these filters in search	1.000	1.000	1.000	1.000	1.000	0.000	EV.RM003.RT=0.0, EV.RM108.RT=0.0	→	EV.RM003.V=0.0
	1000000								

Association Rule		_			Report			
 Association Rule 	25	Association Rules Number of rules: 10000 Selected rules: 1 Covered examples: 21					Mon Feb 29 18, 13:13:28	
		Rules					Save Report	
		Sup 0.89 0.89	0.893	Covr Strg 1.000 0.893 0.893 1.120	1.000	evr Antecedent	Save As: association_rules	~]
		0.85	57 1.000 36 0.917	0.857 1.042	1.000 1.027	0.000 0.020	Tags:	
		0.78	36 0.917 36 0.786	0.893 0.960 0.857 1.042 1.000 0.786 0.893 0.960	1.027 1.000	0.020 0.020 0.000 0.020	Where: orange_widget_pointvalues	
		0.78 0.78 0.78	36 0.917 36 0.880		1.027 1.027	0.000 0.020 0.020	✓ HTML (*.html) PDF (*.pdf)	
		0.75	50 1.000 50 1.000	0.750 1.333 0.750 1.190 0.893 0.840	1.000	0.000	Report (*.report)	Save
Back to La	Print	0.75	0.750	0.750 1.190 1.000 0.750 0.893 0.840	1.000	0.080 0.000	BVĚtőv:HOOM 1EMP–≥ 58.52, Ľářguage . Language . ∩unn74:BOOM TEMP–> 74. I annuace.	LVAU
000 1.00	00 1.000	1.000	1.000	0.000			BIE25C=2.0, HU.R1AG.OSUP=0.0 → HU.R1AH.OSUP=0.0	
000 1.00	00 1.000	1.000	1.000	0.000			BIE25C=2.0 → HU.R1AG.OSUP=0.0, HU.R1A	H.OSUP=0.0
000 1.00	1.000	1.000	1.000	0.000			HU.R1AG.OSUP=0.0 → BIE25C=2.0, HU.R1AH.OSUP=	0.0
000 1.00	1.000	1.000	1.000	0.000			HU.R112.SACFM=0.0, HU.R1AH.OSUP=0.0 → BIE25C=2.0	
000 1.00	1.000	1.000	1.000	0.000			BIE25C=2.0, HU.R1AH.OSUP=0.0 → HU.R112.SACFM=0.0	
000 1.00	00 1.000	1.000	1.000	0.000			HU.R1AH.OSUP=0.0 → BIE25C=2.0, HU.R112.SACFM	=0.0
000 1.00	00 1.000	1.000	1.000	0.000			BIE25C=2.0, HU.R112.SACFM=0.0 → HU.R1AH.OSUP=0.0	
+ 50	2 more							

						Report	t T		
Associa	ition Rules		Num Sele	ntion Rules ober of rules acted rules: 1 ered exampl	I				Mon Feb 26 18, 13:13:28
			Rules						Save Report
			Sup 0.88 0.88 0.74 0.74 0.74 0.77 0.77 0.77 0.77 0.77	33 0.893 33 1.000 57 0.857 57 1.000 60 0.917 36 0.917 36 0.917 36 0.917 36 0.917 36 0.880 36 0.917 36 0.880 36 0.801 36 0.802 36 0.803 36 0.803 36 0.803 36 0.803 36 0.803 37 0.786 38 0.750 39 1.000 30 1.000	Covr Strg 0.000 0.89 0.830 0.12 1.000 0.85 0.857 1.04 0.857 1.04 0.883 0.96 0.857 1.04 0.883 0.96 0.857 1.04 0.893 0.96 0.766 1.27 0.857 1.04 <td>3 1.000 0 1.000 7 1.000 7 1.000 2 1.027 0 1.027 2 1.027 5 1.000 0 1.027 3 1.000 0 1.027 3 1.000 2 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027</td> <td>0.020 0.020 0.000 0.020 0.020 0.020 0.020 0.000 0.000 0.000</td> <td>Antecedent</td> <td>Save As: association_rules Tags: Where: orange_widget_pointvalues / HTML (*.html) PDF (*.pdf) Report (*.report) cel Save</td>	3 1.000 0 1.000 7 1.000 7 1.000 2 1.027 0 1.027 2 1.027 5 1.000 0 1.027 3 1.000 0 1.027 3 1.000 2 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027 0 1.027	0.020 0.020 0.000 0.020 0.020 0.020 0.020 0.000 0.000 0.000	Antecedent	Save As: association_rules Tags: Where: orange_widget_pointvalues / HTML (*.html) PDF (*.pdf) Report (*.report) cel Save
Ва	SCK TO LAST S	heme	0.7	50 1.000	0.750 1.19	0 1.120	0.080		BV116A:HUOM 1EMP=≳ 68.62, Längulage
Save		Print	0.7		1.000 0.75 0.893 0.84		0.000	-	Language , OV/072-ROOM TEMP
1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	0.000				$\begin{array}{rcl} \text{BIE25C=2.0, HU.R1AG.OSUP=0.0} & \rightarrow & \text{HU.R1AH.OSUP=} \\ \text{BIE25C=2.0} & \rightarrow & \text{HU.R1AG.OSUP=} \\ \text{HU.R1AG.OSUP=0.0} & \rightarrow & \text{BIE25C=2.0, HU.F} \\ \text{HU.R112.SACFM=0.0, HU.R1AH.OSUP=0.0} & \rightarrow & \text{BIE25C=2.0} \\ \text{BIE25C=2.0, HU.R1AH.OSUP=0.0} & \rightarrow & \text{HU.R112.SACFM} \end{array}$
1.000	1.000	1.000	1.000	1.000	0.000				HU.R1AH.OSUP=0.0 → BIE25C=2.0, HU.R112.SACFM=0.0
1.000	1.000	1.000	1.000	1.000	0.000				BIE25C=2.0, HU.R112.SACFM=0.0 → HU.R1AH.OSUP=0.0

 Association 	Rules		Associa	tion Rules		Report	Mon Feb 26 18, 13:13:28
			Num Selec	ber of rules cted rules: ered examp	1		
			Rules	And the second second second		Save Report	
			Supp 0.89 0.89	3 0.893 3 1.000	Covr Strg 1.000 0.893 0.893 1.120	1.000 0.000	Save As: association_rules
			0.85 0.85 0.78 0.78	7 1.000 6 0.917 6 0.880	0.893 0.960	1.027 0.020	Tags:
			0.78 0.78 0.78 0.78	6 0.786 6 0.880	0.857 1.042 1.000 0.786 0.893 0.960 0.786 1.273	1.027 0.020 1.000 0.000 1.027 0.020 1.000 0.000	where: orange_widget_pointvalues
			0.78 0.78 0.75	6 0.917 6 0.880 0 0.750	0.857 1.042 0.893 0.960 1.000 0.750	1.0270.0201.0270.0201.0000.000	✓ HTML (*.html) PDF (*.pdf)
			0.75 0.75 0.75 0.75	0 1.000 0 0.840	0.750 1.333 0.750 1.190 0.893 0.840 0.750 1.190	1.000 0.000 1.120 0.080 1.120 0.080 1.120 0.080	Report (*,report)
Save	to Last S th	Print	0.75	0 0.750	1.000 0.750 0.893 0.840	1.000 0.000	D Language
 3 	.000	1.000	1.000	1.000			BIE25C=2.0, HU.R1AG.OSUP=0.0 → HU.R1AH.OSUF
1	.000	1.000	1.000	1.000	0.000		BIE25C=2.0 → HU.R1AG.OSUF
1	.000	1.000	1.000	1.000	0.000		HU.R1AG.OSUP=0.0 \rightarrow BIE25C=2.0, HL
1	.000	1.000	1.000	1.000	0.000		HU.R112.SACFM=0.0, HU.R1AH.OSUP=0.0 → BIE25C=2.0
1	.000	1.000	1.000	1.000	0.000		BIE25C=2.0, HU.R1AH.OSUP=0.0 → HU.R112.SACFI
1	.000	1.000	1.000	1.000	0.000		HU.R1AH.OSUP=0.0 → BIE25C=2.0, HU.R112.SACFM=0.0
	.000	1.000	1.000	1.000			BIE25C=2.0, HU.R112.SACFM=0.0 \rightarrow HU.R1AH.OSUP=0.0

+ 502 more

Decision Trees

Association Rules

Anomaly Detection

ANALYSIS

Anomaly Detection via Clustering

Goal: Identify points that aren't behaving as expected

Too cold?

	EV.RM101.RT	EV.RM102.RT	EV.RM103.RT
2017-12-20 00:00:00	68.5	70.2	32.4
2017-12-20 01:00:00	68.4	70.0	32.4

ANALYSIS

Anomaly Detection via Clustering

Goal: Identify points that aren't behaving as expected

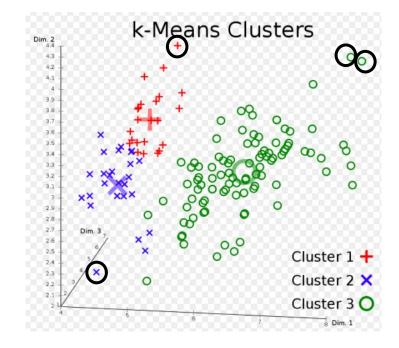
Data Requirements: Continuous data for multiple similar points, or multiple days for the same point

	EV.RM101.RT	EV.RM102.RT	EV.RM103.RT
2017-12-20 00:00:00	68.5	70.2	32.4
2017-12-20 01:00:00	68.4	70.0	32.4

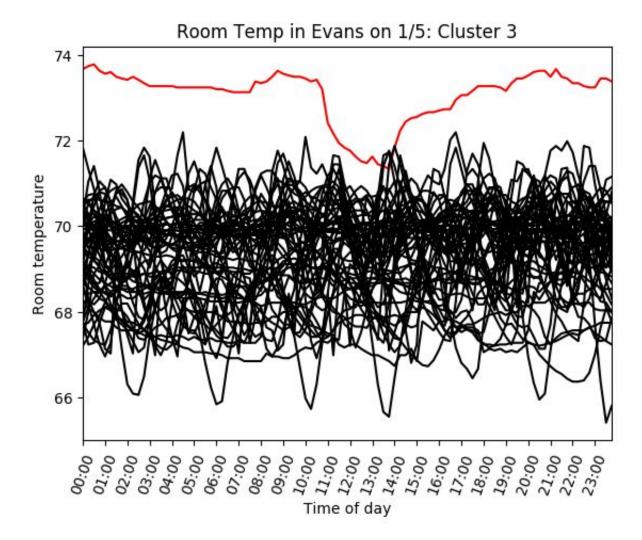
EV.RM101	I.RT		
	2017-12-20	2017-12-21	2017-12-22
00:00:00	68.5	68.5	74.0
01:00:00	68.4	68.6	74.2
		1	Too hot?

Too cold?

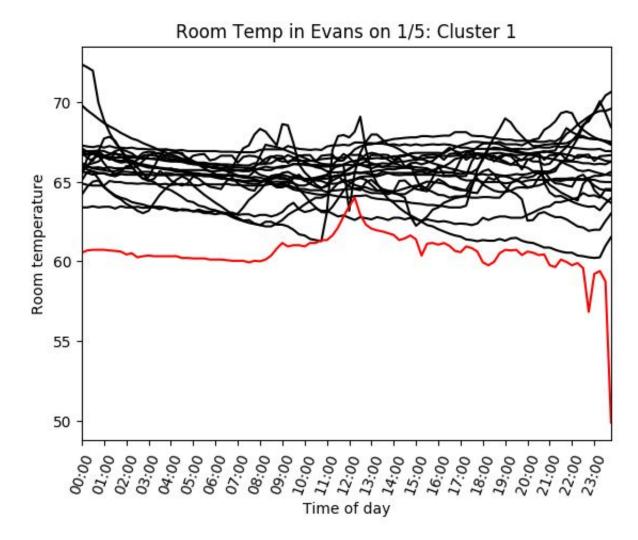
ANALYSIS

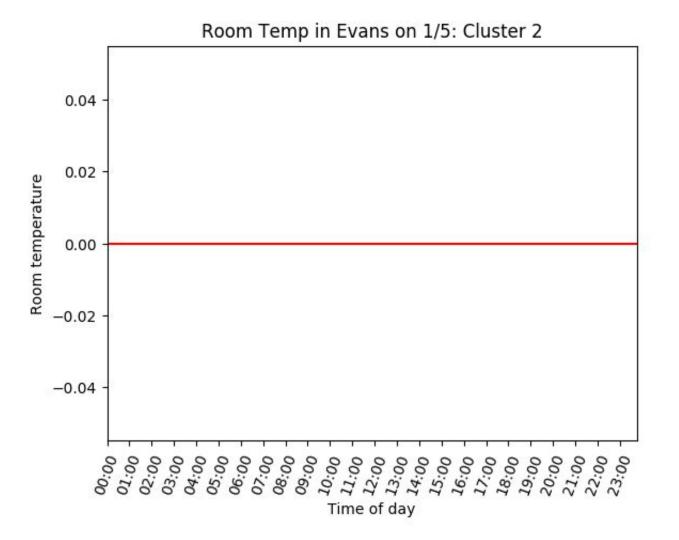

Anomaly Detection via Clustering

Goal: Identify points that aren't behaving as expected


Data Requirements: Continuous data for multiple similar points, or multiple days for the same point

Method:


- 1. Perform k-means clustering
- 2. Pick out anomalies as points that are far from their cluster center


Anomaly Detection

Anomaly Detection

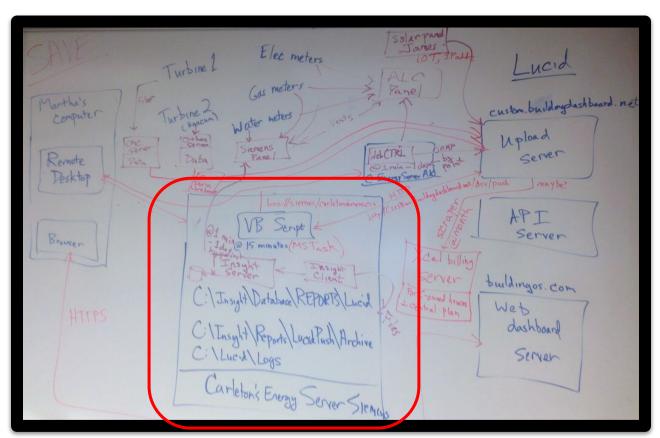
Anomaly Detection

Dashboard

Room	Room Temp (deg F)	Valve Percent (%)
122	69.65	100.0
200	70.62	12.15
202	70.22	67.58
203	67.72	100.0
204	68.6	8.36
		0.0
		0.0
		15.82
208	0.0	nan
209	68.96	nan
211	70.11	26.38
212	70.65	0.0
213	69.18	0.0
214	69.86	2.59
215	65.94	0.0
	122 200 202 203 204 205 206 207 208 209 211 212 213 214	122 69.65 200 70.62 202 70.22 203 67.72 204 68.6 205 70.37 206 73.68 207 69.11 208 0.0 209 68.96 211 70.11 212 70.65 213 69.18 214 69.86

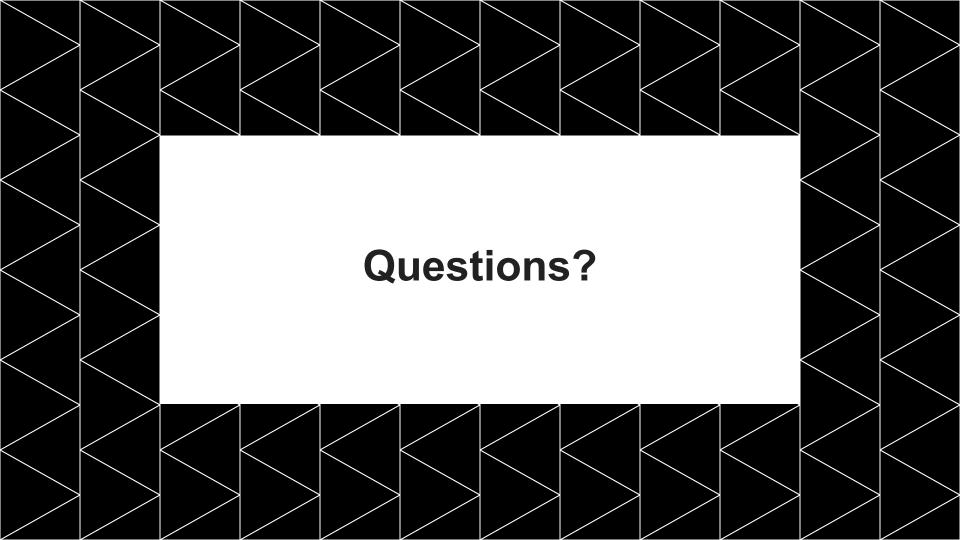
problem data database api dashboard analysis conclusion

- 1. Challenges
- 2. Future
- 3. THX


Overall challenges

- Difficulty with data
- Inexperience with field
- Design challenges

Future possibilities


- Parsing more points
- More tools for the dashboard
- Try more analysis algorithms

Live data?

Thank you to:

- Jeff Ondich
- Martha Larson, Mitch Miller, Jeff Mason
- Mike Tie, Dave Flynn
- CS Faculty and peers
- Our friends and family

